將進貨單價為30元的商品按40元出售時,每天賣出500件。據(jù)市場調查發(fā)現(xiàn),如果這種商品每件漲價1元,其每天的銷售量就減少10件。
(1)要使得每天能賺取8000元的利潤,且盡量減少庫存,售價應該定為多少?
(2)售價定為多少時,每天獲得的利潤最大?最大利潤為多少?
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知△OAB的頂點A(﹣6,0),B(0,2),O是坐標原點,將△OAB繞點O按順時針旋轉90°,得到△ODC.
(1)寫出C,D兩點的坐標;
(2)求過A,D,C三點的拋物線的解析式,并求此拋物線頂點E的坐標;
(3)證明AB⊥BE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,拋物線與x軸交于點A(-1,0)、B(3,0),與y軸交于點C(0,3).
(1)求拋物線的解析式及頂點D的坐標;
(2)若點P是拋物線第一象限上的一個動點,過點P作PQ∥AC交x軸于點Q.當點P的坐標為 時,四邊形PQAC是平行四邊形;當點P的坐標為 時,四邊形PQAC是等腰梯形. (利用備用圖畫圖,直接寫出結果,不寫求解過程).
(3)若P為線段BD上的一個動點,過點P作PM⊥x軸于點M,求四邊形PMAC的面積的最大值和此時點P的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線與x軸交于點B、C,與y軸交于點E,且點B在點C的左側.
(1)若拋物線過點M(-2,-2),求實數(shù)a的值;
(2)在(1)的條件下,解答下列問題:
①求出△BCE的面積;
②在拋物線的對稱軸上找一點P,使CP+EP的值最小,求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
當拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中的字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1①有y=(x-m)2+2m-1②,
所以拋物線頂點坐標為(m,2m-1),即x=m③,y=2m-1④.
當m的值變化時,x,y的值也隨之變化,因而y的值也隨x值的變化而變化.
將③代入④,得y=2x-1⑤.可見,不論m取任何實數(shù),拋物線頂點的縱坐標y和橫坐標x都滿足關系式:y=2x-1;
根據(jù)上述閱讀材料提供的方法,確定點(-2m, m-1)滿足的函數(shù)關系式為_______.
(2)根據(jù)閱讀材料提供的方法,確定拋物線頂點的縱坐標y與橫坐標x之間的關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,拋物線與x軸交于A、B兩點(A在B的左側),與y軸交于點C(0,4),頂點為(1,).
(1)求拋物線的函數(shù)表達式;
(2)如圖1,設拋物線的對稱軸與x軸交于點D,試在對稱軸上找出點P,使△CDP為等腰三角形,請直接寫出滿足條件的所有點P的坐標.
(3)如圖2,若點E是線段AB上的一個動點(與A、B不重合),分別連接AC、BC,過點E作EF∥AC交線段BC于點F,連接CE,記△CEF的面積為S,S是否存在最大值?若存在,求出S的最大值及此時E點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
某公司生產的一種健身產品在市場上受到普遍歡迎,每年可在國內、國外市場上全部售完,該公司的年產量為6千件,若在國內市場銷售,平均每件產品的利潤y1(元)與國內銷售數(shù)量x(千件)的關系為:若在國外銷售,平均每件產品的利潤y2(元)與國外的銷售數(shù)量t(千件)的關系為:
(1)用x的代數(shù)式表示t為:t= ;當0<x≤4時, y2與x的函數(shù)關系為y2= ;當 ≤x< 時,y2=100;
(2)求每年該公司銷售這種健身產品的總利潤w(千元)與國內的銷售數(shù)量x(千件)的函數(shù)關系式,并指出x的取值范圍;
(3)該公司每年國內、國外的銷售量各為多少時,可使公司每年的總利潤最大?最大值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖,四邊形OABC為直角梯形,A(4,0),B(3,4),C(0,4).點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達終點時,另一個動點也隨之停止運動.過點N作NP垂直x軸于點P,連接AC交NP于Q,連接MQ.
(1)點 (填M或N)能到達終點;
(2)求△AQM的面積S與運動時間t的函數(shù)關系式,并寫出自變量t的取值范圍,當t為何值時,S的值最大;
(3)是否存在點M,使得△AQM為直角三角形?若存在,求出點M的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,已知拋物線(b,c是常數(shù),且c<0)與x軸分別交于點A,B(點A位于點B的左側),與y軸的負半軸交于點C,點A的坐標為(-1,0).
(1)b= ,點B的橫坐標為 (上述結果均用含c的代數(shù)式表示);
(2)連接BC,過點A作直線AE∥BC,與拋物線交于點E.點D是x軸上一點,其坐標為
(2,0),當C,D,E三點在同一直線上時,求拋物線的解析式;
(3)在(2)的條件下,點P是x軸下方的拋物線上的一動點,連接PB,PC,設所得△PBC的面積為S.
①求S的取值范圍;
②若△PBC的面積S為整數(shù),則這樣的△PBC共有 個.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com