【題目】已知:如圖(1),如果AB∥CD∥EF. 那么∠BAC+∠ACE+∠CEF=360°.
老師要求學(xué)生在完成這道教材上的題目后,嘗試對(duì)圖形進(jìn)行變式,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小華首先完成了對(duì)這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小華用到的平行線性質(zhì)可能是______________.
(2)接下來,小華用《幾何畫板》對(duì)圖形進(jìn)行了變式,她先畫了兩條平行線AB,EF,然后在平行線間畫了一點(diǎn)C,連接AC,EC后,用鼠標(biāo)拖動(dòng)點(diǎn)C,分別得到了圖(2)(3)(4),小華發(fā)現(xiàn)圖(3)正是上面題目的原型,于是她由上題的結(jié)論猜想到圖(2)和(4)中的∠BAC,∠ACE與∠CEF之間也可能存在著某種數(shù)量關(guān)系.然后,她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.
請(qǐng)你在小華操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:
①猜想:圖(2)中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: .
②補(bǔ)全圖(4),并直接寫出圖中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系: . (3)小華繼續(xù)探究:如圖(5),若直線AB與直線EF不平行,點(diǎn)G,H分別在直線AB、直線EF上,點(diǎn)C在兩直線外,連接CG,CH,GH,且GH同時(shí)平分∠BGC和∠FHC,請(qǐng)?zhí)剿鳌?/span>AGC,∠GCH與∠CHE之間的數(shù)量關(guān)系?并說明理由.
【答案】(1)兩直線平行,同旁內(nèi)角互補(bǔ).(2)①∠ACE=∠BAC+∠FEC.②∠ACE=∠FEC-∠BAC.(3)2∠GCH=∠AGC+∠CHE.
【解析】
(1)根據(jù)兩直線平行同旁內(nèi)角互補(bǔ)即可解決問題;
(2)①猜想∠ACE=∠BAC+∠FEC.過點(diǎn)C作CD∥AB.利用平行線的性質(zhì)即可解決問題;
②∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系是∠ACE=∠FEC-∠BAC.利用平行線的性質(zhì)以及三角形的外角的性質(zhì)即可解決問題;
(3)延長(zhǎng)AB,EF,交于點(diǎn)P,依據(jù)∠CGP=180°-∠AGC,∠CHP=180°-∠CHE,即可得到∠CGP+∠CHP=360°-(∠AGC+∠CHE),再根據(jù)四邊形內(nèi)角和,即可得到四邊形GCHP中,∠C+∠P=360°-(∠CGP+∠CH)=∠AGC+∠CHE,進(jìn)而得出結(jié)論.
(1)如圖,
∵AB∥CD∥EF
∴∠BAC+∠ACD=180°,(兩直線平行,同旁內(nèi)角互補(bǔ))
∠DCE+∠CEF=180°,(兩直線平行,同旁內(nèi)角互補(bǔ))
∴∠BAC+∠ACD+∠DCE+∠CEF=∠BAC+∠ACE+∠CEF=360°.
故答案為:兩直線平行,同旁內(nèi)角互補(bǔ).
(2)①圖(2)中∠BAC,∠ACE與∠CEF之間的數(shù)量關(guān)系:∠ACE=∠BAC+∠FEC.
證明:過點(diǎn)C作CD∥AB,如圖,
∴∠BAC=∠ACD,
∵AB∥EF,
∴EF∥CD,
∴∠DCE=∠CEF
∴∠ACD+∠DCE=∠BAC+∠CEF,即∠ACE=∠BAC+∠FEC.
②連接AC,CE交AB于點(diǎn)D,如圖,
∵AB∥EF
∴∠BDC=∠CEF,
∵∠BDC=∠BAC+∠ACE
∴∠CEF=∠BAC+∠ACE,即∠ACE=∠FEC-∠BAC.
(3) 延長(zhǎng)AB,EF,交于點(diǎn)P,如圖,
∵GH同時(shí)平分∠BGC和∠FHC,
∴∠CGH=∠BGH,∠CHG=∠FHG,
∴∠C=∠P,
∵∠CGP=180°-∠AGC,∠CHP=180°-∠CHE,
∴∠CGP+∠CHP=360°-(∠AGC+∠CHE),
∵四邊形GCHP中,∠C+∠P=360°-(∠CGP+∠CH)=360°-[360°-(∠AGC+∠CHE)]= ∠AGC+∠CHE,
即2∠GCH=∠AGC+∠CHE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y= ax+bx+c,自變量x 與函數(shù)y 的對(duì)應(yīng)值如表:
x | ... | -5 | -4 | -3 | -2 | -1 | 0 | ... |
y | ... | 4 | 0 | -2 | -2 | 0 | 4 | ... |
下列說法正確的是( )
A. 拋物線的開口向下 B. 當(dāng)x>-3時(shí),y隨x的增大而增大
C. 二次函數(shù)的最小值是-2 D. 拋物線的對(duì)稱軸是x=-5/2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=ax+b(a、b是常數(shù),a≠0)函數(shù)圖象經(jīng)過(﹣1,4),(2,﹣2)兩點(diǎn),下面說法中:(1)a=2,b=2;(2)函數(shù)圖象經(jīng)過(1,0);(3)不等式ax+b>0的解集是x<1;(4)不等式ax+b<0的解集是x<1;正確的說法有____________________.(請(qǐng)寫出所有正確說法的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,G是邊長(zhǎng)為8的正方形ABCD的邊BC上的一點(diǎn),矩形DEFG的邊EF過點(diǎn)A,GD=10.
(1)求FG的長(zhǎng);
(2)直接寫出圖中與△BHG相似的所有三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校準(zhǔn)備開展“陽光體育活動(dòng)”,決定開設(shè)以下體育活動(dòng)項(xiàng)目:足球、乒乓球、籃球和羽毛球,要求每位學(xué)生必須且只能選擇一項(xiàng),為了解選擇各種體育活動(dòng)項(xiàng)目的學(xué)生人數(shù),隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將通過獲得的數(shù)據(jù)進(jìn)行整理,繪制出以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖回答問題:
(1)這次活動(dòng)一共調(diào)查了 名學(xué)生;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)在扇形統(tǒng)計(jì)圖中,選擇籃球項(xiàng)目的人數(shù)所在扇形的圓心角等于 度;
(4)若該學(xué)校有1500人,請(qǐng)你估計(jì)該學(xué)校選擇足球項(xiàng)目的學(xué)生人數(shù)約是 人。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板按如圖放置,小明得到下列結(jié)論:①如果∠2=30°,則有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,則有∠2=30°;④如果∠CAD=150°,則∠4=∠C;那么其中正確的結(jié)論有________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知二次函數(shù)(a≠0)的圖象與x軸交于點(diǎn)A(-1,0),與y軸的交點(diǎn)B在(0,-2)和(0,-1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x=1.下列結(jié)論:①abc>0;②4a+2b+c>0;③4ac-b2<16a;④<a<;⑤b>c.其中正確結(jié)論個(gè)數(shù)( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,拋物線y=ax2+bx+c與直線y=﹣x+6分別交于x軸和y軸上同一點(diǎn),交點(diǎn)分別是點(diǎn)B和點(diǎn)C,且拋物線的對(duì)稱軸為直線x=4.
(1)求出拋物線與x軸的兩個(gè)交點(diǎn)A,B的坐標(biāo).
(2)試確定拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點(diǎn)E,∠CDB的平分線DF交BC于點(diǎn)F.
(1)求證:△ABE≌△CDF;
(2)若AB=DB,猜想:四邊形DFBE是什么特殊的四邊形?并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com