【題目】如圖在正六邊形中,有兩點同時、同速從中點出發(fā),P沿方向運動,Q點沿方向指向運動,10秒后,兩點與多邊形中心連線及多邊形(延長線)所圍成圖形的面積如圖(陰影部分的面積)有兩部分為,則之間的數(shù)量關(guān)系是( )
A.B.C.D.
【答案】C
【解析】
如圖,連接OB,OC,作OW⊥BC于W,OT⊥CD于T.因為點P,Q同時,同速從AB中點M出發(fā),所以MQ=MB+BC+PC,推出MQOM=(BM+BC+PC)OM及BC= BG+CG推出S△OMQ=S△OBM+S△OBG+S△OGC+S△OCP=S△OBM+S△OBG+S2,再根據(jù)S1=S△OGC+S△OCP,推出S1=S2.
如圖,連接OB,OC,作OW⊥BC于W,OT⊥CD于T.
在正六邊形ABCDEF中,
∵AM=BM,
∴OM⊥AB,
∵OW⊥BC,OT⊥CD,
∴OM=OW=OT,
∵點P,Q同時,同速從AB中點M出發(fā),
∴MQ=MB+BC+PC,
∴MQOM=(BM+BC+PC)OM,
又BC=BG+CG
∴S△OMQ=S△OBM+S△OBG+S△OGC+S△OCP=S△OBM+S△OBG+S2,
∵S1=S△OGC+S△OCP,
∴S1=S2.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:的項點為,交軸于、兩點(點在點左側(cè)),且.
(1)求拋物線的函數(shù)解析式;
(2)過點的直線交拋物線于點,交軸于點,若的面積被軸分為1: 4兩個部分,求直線的解析式;
(3)在(2)的情況下,將拋物線繞點逆時針旋轉(zhuǎn)180°得到拋物線,點為拋物線上一點,當(dāng)點的橫坐標(biāo)為何值時,為直角三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列要求,解答相關(guān)問題:
(1)請補全以下求不等式的解集的過程:
①構(gòu)造函數(shù),畫出圖象:根據(jù)不等式特征構(gòu)造二次函數(shù);拋物線的對稱軸為_________,開口向下,頂點坐標(biāo)為__________,與軸的交點是_________,用三點法畫出二次函數(shù)的圖象如圖1所示;
②數(shù)形結(jié)合,求得界點:當(dāng)時,求得方程的解為___________;
③借助圖象,寫出解集:由圖象可得不等式的解集為_________.
(2)利用(1)中求不等式解集的方法步驟,求不等式的解集.
①構(gòu)造函數(shù),畫出的圖象(在圖2中畫出);
②數(shù)形結(jié)合,求得界點:當(dāng)__________時,求得方程的解為__________;
③借助圖象,寫出解集.由圖2知,不等式的解集是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師隨機抽查了本學(xué)期學(xué)生讀課外書冊數(shù)的情況,繪制成條形圖(圖1)和不完整的扇形圖(圖2),其中條形圖被墨跡遮蓋了一部分.
(1)求條形圖中被遮蓋的數(shù),并寫出冊數(shù)的中位數(shù);
(2)在所抽查的學(xué)生中隨機選一人談讀書感想,求選中讀書超過5冊的學(xué)生的概率;
(3)隨后又補查了另外幾人,得知最少的讀了6冊,將其與之前的數(shù)據(jù)合并后,發(fā)現(xiàn)冊數(shù)的中位數(shù)沒改變,則最多補查了 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一家蔬菜公司收購到某種綠色蔬菜140噸,準(zhǔn)備加工后進行銷售,銷售后獲利的情況如下表所示:
銷售方式 | 粗加工后銷售 | 精加工后銷售 |
每噸獲利(元) | 1000 | 2000 |
已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時進行.受季節(jié)等條件的限制,公司必須在一定時間內(nèi)將這批蔬菜全部加工后銷售完.
(1)如果要求12天剛好加工完140噸蔬菜,則公司應(yīng)安排幾天精加工,幾天粗加工?
(2)如果先進行精加工,然后進行粗加工.
①試求出銷售利潤元與精加工的蔬菜噸數(shù)之間的函數(shù)關(guān)系式;
②若要求在不超過10天的時間內(nèi),將140噸蔬菜全部加工完后進行銷售,則加工這批蔬菜最多獲得多少利潤?此時如何分配加工時間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為鼓勵市民節(jié)約用氣,對居民管道天然氣實行兩檔階梯式收費,年用天然氣量310立方米及以下為第一檔;年用天然氣量超出310立方米為第二檔,某戶應(yīng)交天然氣費(元)與年用天然氣量(立方米)的關(guān)系如圖所示,觀察圖像并回答問題:
(1)求與之間的函數(shù)解析式并寫出自變量的取值范圍;
(2)嘉琪家2018年天然氣費為1029元,求嘉琪家2018年使用天然氣量是否超出310立方米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,小蘭用尺規(guī)作圖作△ABC邊AC上的高BH,作法如下:
①分別以點DE為圓心,大于DE的一半長為半徑作弧兩弧交于F;
②作射線BF,交邊AC于點H;
③以B為圓心,BK長為半徑作弧,交直線AC于點D和E;
④取一點K使K和B在AC的兩側(cè);
所以BH就是所求作的高.其中順序正確的作圖步驟是( 。
A.①②③④B.④③①②C.②④③①D.④③②①
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是3,BP=CQ,連接AQ,DP交于點O,并分別與邊CD,BC交于點F,E,連接AE,下列結(jié)論:①AQ⊥DP;②OA2=OEOP;③S△AOD=S四邊形OECF;④當(dāng)BP=1時,tan∠OAE=,其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù) y=ax2+bx+c 的圖象與 x 軸的交點的橫坐標(biāo)分別為-1,3,則:
①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意 x 均有 ax2+bx≥a+b,其中結(jié)論正確的個數(shù)有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com