【題目】如圖,在平面直角坐標(biāo)系中,,形狀相同的拋物線的頂點(diǎn)在直線上,其對(duì)稱軸與軸的交點(diǎn)的橫坐標(biāo)依次為2,35,1813,,根據(jù)上述規(guī)律,拋物線的頂點(diǎn)坐標(biāo)為_________

【答案】

【解析】

根據(jù)A-3,0),B0,1)的坐標(biāo)求直線AB的解析式為,根據(jù)橫坐標(biāo)的變化規(guī)律可知,C8的橫坐標(biāo)為55,代入直線AB的解析式中,可求縱坐標(biāo).

解:設(shè)直線AB的解析式為y=kx+b,(k≠0),
A-3,0),B01),

解得,

∴直線AB的解析式為

∵對(duì)稱軸與x軸的交點(diǎn)的橫坐標(biāo)依次為2,35,8,13,
觀察發(fā)現(xiàn):每個(gè)數(shù)都是前兩個(gè)數(shù)的和,
∴拋物線C8的頂點(diǎn)坐標(biāo)的橫坐標(biāo)為55,
當(dāng)x=55時(shí),

∴拋物線C8的頂點(diǎn)坐標(biāo)為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】象棋是棋類益智游戲,中國(guó)象棋在中國(guó)有著三千多年的歷史,由于用具簡(jiǎn)單,趣味性強(qiáng),成為流行極為廣泛的棋藝活動(dòng).李凱和張萌利用象棋棋盤和棋子做游戲.李凱將四枚棋子反面朝上放在棋盤上,其中有兩個(gè)、一個(gè)、一個(gè),張萌隨機(jī)從這四枚棋子中摸一枚棋子,記下正漢字,然后再從剩下的三枚棋子中隨機(jī)摸一枚.

1)求張萌第一次摸到的棋子正面上的漢字是的概率;

2)游戲規(guī)定:若張萌兩次摸到的棋子中有,則張萌勝;否則,李凱勝.請(qǐng)你用樹狀圖或列表法求李凱勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017內(nèi)蒙古通遼市)如圖,物理教師為同學(xué)們演示單擺運(yùn)動(dòng),單擺左右擺動(dòng)中,在OA的位置時(shí)俯角∠EOA=30°,在OB的位置時(shí)俯角∠FOB=60°,若OCEF,點(diǎn)A比點(diǎn)B7cm.求:

(1)單擺的長(zhǎng)度(≈1.7);

(2)從點(diǎn)A擺動(dòng)到點(diǎn)B經(jīng)過的路徑長(zhǎng)(π≈3.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x+1)(x9)與坐標(biāo)軸交于AB、C三點(diǎn),D為頂點(diǎn),連結(jié)ACBC.點(diǎn)P是該拋物線在第一象限內(nèi)上的一點(diǎn).過點(diǎn)Py軸的平行線交BC于點(diǎn)E,連結(jié)APBC于點(diǎn)F,則的最大值為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在⊙O中,弦AC⊥弦BD,垂足為H,連接BC,過點(diǎn)DDEBC于點(diǎn)E,DEAC于點(diǎn)F

1)如圖1,求證:BD平分∠ADF;

2)如圖2,連接OC,若ACBC,求證:OC平分∠ACB;

3)如圖3,在(2)的條件下,連接AB,過點(diǎn)DDNAC交⊙O于點(diǎn)N,若AB3,DN9.求sinADB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸正半軸交于兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),與軸交于點(diǎn)

1)利用直尺和圓規(guī),作出拋物線的對(duì)稱軸(尺規(guī)作圖,保留作圖痕跡,不寫作法);

2)若是等腰直角三角形,且其腰長(zhǎng)為3,求的值;

3)在(2)的條件下,點(diǎn)為拋物線對(duì)稱軸上的一點(diǎn),則的最小值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某農(nóng)戶計(jì)劃用長(zhǎng)12m的籬笆圍成一個(gè)字形的生物園飼養(yǎng)兩種不同的家禽,生物園的一面靠墻,且墻的可利用長(zhǎng)度最長(zhǎng)為7m

1)若生物園的面積為9m2,則這個(gè)生物園垂直于墻的一邊長(zhǎng)為多少?

2)若要使生物園的面積最大,該怎樣圍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn):

(1)如圖1,在RtABC中,∠A90°,ABkAC(k1),DAB上一點(diǎn),DEBC,則BD,EC的數(shù)量關(guān)系為   

類比探究

(2)如圖2,將△AED繞著點(diǎn)A順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角為a(0°<a90°),連接CE,BD,請(qǐng)問(1)BD,EC的數(shù)量關(guān)系還成立嗎?說明理由

拓展延伸:

(3)如圖3,在(2)的條件下,將△AED繞點(diǎn)A繼續(xù)旋轉(zhuǎn),旋轉(zhuǎn)角為a(a90°).直線BD,CE交于F點(diǎn),若AC1,AB,則當(dāng)∠ACE15°時(shí),BFCF的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,的中點(diǎn),的中點(diǎn),過點(diǎn)的延長(zhǎng)線于點(diǎn)

(1)求證:四邊形是菱形;

(2),,求菱形的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案