【題目】太原市公共自行車的建設(shè)速度、單日租騎量等四項指標(biāo)穩(wěn)居全國首位.公共自行車車樁的截面示意圖如圖所示,AB⊥AD,AD⊥DC,點(diǎn)B,C在EF上,EF∥HG,EH⊥HG,AB=75cm,AD=24cm,BC=25cm,EH=4cm,則點(diǎn)A到地面的距離是 cm.
【答案】76
【解析】解:過點(diǎn)A作AM⊥BF于點(diǎn)M,過點(diǎn)C作CN⊥AB于點(diǎn)N,如圖所示:
∵AD=24cm,則NC=24cm,
∴BN= = =7(cm),
∵∠AMB=∠CNB=90°,∠ABM=∠CBN,
∴△BNC∽△BMA,
∴ ,
∴ ,
解得:AM=72,
故點(diǎn)A到地面的距離=72+4=76(cm).
所以答案是:76.
【考點(diǎn)精析】關(guān)于本題考查的相似三角形的性質(zhì)和相似三角形的應(yīng)用,需要了解對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形;測高:測量不能到達(dá)頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線PM切⊙O于點(diǎn)M,直線PO交⊙O于A、B兩點(diǎn),弦AC∥PM,連接OM、BC.求證:
(1)△ABC∽△POM;
(2)2OA2=OPBC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程k2x2﹣2(k+1)x+1=0有兩個實數(shù)根.
(1)求k的取值范圍;
(2)當(dāng)k=1時,設(shè)所給方程的兩個根分別為x1和x2 , 求 + 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將長方形ABCD沿著對角線BD折疊,使點(diǎn)C落在處,交AD于點(diǎn)E.
(1)試判斷△BDE的形狀,并說明理由;
(2)若,,求△BDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所開發(fā)了一種新藥,在試驗藥效時發(fā)現(xiàn),如果成人按規(guī)定劑量服用,那么服藥后2小時時血液中含藥量最高,達(dá)每毫升8微克(1000微克=1毫克),接著逐步衰減,10小時時血液中含藥量為每毫升4微克,每毫升血液中含藥量y(微克),隨時間x(小時)的變化如圖所示.當(dāng)成人按規(guī)定劑量服藥后:
(1)求y與x之間的解析式;
(2)如果每毫升血液中含藥量不低于3微克或3微克以上時,在治療疾病時是有效的,那么這個有效時間是多少小時?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:在平面直角坐標(biāo)系中,每個小正方形的邊長為1,△ABC的頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(-3,2).請按要求分別完成下列各小題:
(1)把△ABC向下平移7個單位,再向右平移7個單位,得到△A1B1C1,畫出△A1B1C1;
(2)畫出△A1B1C1關(guān)于x軸對稱的△A2B2C2;
畫出△A1B1C1關(guān)于y軸對稱的△A3B3C3;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,點(diǎn)E在正方形ABCD的BC邊上,BF⊥AE于點(diǎn)F,DG⊥AE于點(diǎn)G.可知△ADG≌△BAF.(不要求證明)
拓展:如圖②,點(diǎn)B、C在∠MAN的邊AM、AN上,點(diǎn)E, F在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.
應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,AB>BC.點(diǎn)D在邊B上.CD=2BD.點(diǎn)E, F在線段AD上.∠1=∠2=∠BAC.若△ABC的面積為9,則△ABE與△CDF的面積之和為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)畢業(yè)生響應(yīng)國家“自主創(chuàng)業(yè)”的號召,投資開辦了一個裝飾品商店,該店購進(jìn)一種新上市的飾品進(jìn)行了30天的試銷售,購進(jìn)價格為40元/件.銷售結(jié)束后,得知日銷售量P(件)與銷售時間x(天)之間有如下關(guān)系:P=﹣2x+120(1≤x≤30,且x為整數(shù));銷售價格Q(元/件)與銷售時間x(天)之間有如下關(guān)系:Q= x+50(1≤x≤30,且x為整數(shù)).
(1)試求出該商店日銷售利潤w(元)與銷售時間x(天)之間的函數(shù)關(guān)系式;
(2)在這30天的試銷售中,哪一天的日銷售利潤最大,哪一天的日銷售利潤最?并分別求出這個最大利潤和最小利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,OD∥BC,交⊙O于點(diǎn)D,交AC于點(diǎn)E,連接BD,BD交AC于點(diǎn)F,延長AC到點(diǎn)P,連接PB.
(1)若PF=PB,求證:PB是⊙O的切線;
(2)如果AB=10,BC=6,求CE的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com