【題目】已知等腰RtABC中,∠BAC=90°.點(diǎn)D從點(diǎn)B出發(fā)沿射線BC移動(dòng),以AD為腰作等腰RtADE,DAE=90°.連接CE.

(1)如圖,求證:△ACE≌△ABD;

(2)點(diǎn)D運(yùn)動(dòng)時(shí),∠BCE的度數(shù)是否發(fā)生變化?若不變化,求它的度數(shù);若變化,說明理由;

3)若AC=,當(dāng)CD=1時(shí),請求出DE的長.

【答案】1見解析;(2)90°;(3)DE的長為

【解析】試題分析:(1)由△ABC和△ADE都是等腰Rt△可得,AB=AC,AD=AE,∠BAC=∠DAE=90°,則有∠BAD=∠CAE,從而可證到△ACE≌△ABD;

(2)由△ACE≌△ABD可得∠ACE=∠ABD=45°,從而得到∠BCE=∠BCA+∠ACE=90°;

(3)可分點(diǎn)D在線段BC上時(shí)(如圖1)和點(diǎn)D在線段BC延長線上時(shí)(如圖2)兩種情況討論,在Rt△ABC中運(yùn)用勾股定理可求出BC,從而得到BD,由△ACE≌△ABD可得CE=BD,在Rt△DCE中運(yùn)用勾股定理就可求出DE.

試題解析(1)∵△ABC和△ADE都是等腰Rt△,

∴AB=AC,AD=AE,∠BAC=∠DAE=90°,

∴∠BAD=∠CAE,

在△ACE和△ABD中,

∴△ACE≌△ABD;

(2)∵△ACE≌△ABD,

∴∠ACE=∠ABD=45°,

∴∠BCE=∠BCA+∠ACE=45°+45°=90°;

∴∠BCE的度數(shù)不變,為90°;

(3)①點(diǎn)D在線段BC上時(shí),如圖1,

∵AB=AC=,∠BAC=90°,

∴BC=,

∵CD=1,

∴BD=﹣1,

∵△ACE≌△ABD,

∴CE=BD=﹣1.

∵∠BCE=90°,

∴DE=;

②點(diǎn)D在線段BC延長線上時(shí),如圖2,

∵AB=AC=,∠BAC=90°,

∴BC=,

∵CD=1,

∴BD=+1,

∵△ACE≌△ABD,

∴CE=BD=+1,

∵∠BCE=90°,

∴∠ECD=90°,

∴DE=,

綜上所述:DE的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ABC+D=180°AC平分∠BAD,CEABCFAD.試說明:

1CBE≌△CDF;

2AB+DF=AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c過A,B,C三點(diǎn),點(diǎn)A的坐標(biāo)是(3,0),點(diǎn)C的坐標(biāo)是(0,﹣3),動(dòng)點(diǎn)P在拋物線上.

(1)b= , c= , 點(diǎn)B的坐標(biāo)為;(直接填寫結(jié)果)
(2)是否存在點(diǎn)P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,說明理由;
(3)過動(dòng)點(diǎn)P作PE垂直y軸于點(diǎn)E,交直線AC于點(diǎn)D,過點(diǎn)D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時(shí),求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在5×5的方格紙中,每一個(gè)小正方形的邊長都為1.

(1)BCD是不是直角?請說明理由;

(2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子中裝有 4 個(gè)紅球和 6 個(gè)黃球,這些球除顏色外都相同,將袋子中的球充 分搖勻后,隨機(jī)摸出一球.

1)分別求摸出紅球和摸出黃球的概率

2)為了使摸出兩種球的概率相同,再放進(jìn)去 8 個(gè)同樣的紅球或黃球,那么這 8 個(gè)球中紅球和 黃球的數(shù)量分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知DEBC,BE平分∠ABC,∠C=65°,∠ABC=50°.

(1)求∠BED的度數(shù);

(2)判斷BEAC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半圓O的直徑AB=10cm,弦AC=6cm,AD平分∠BAC,則AD的長為(
A. cm
B. cm
C. cm
D.4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】m2-2mn+2n2-8n+16=0,求m、n的值.

解:∵m2-2mn+2n2-8n+16=0,

m2-2m nn2)+( )=0,

即( 2+( 2=0.根據(jù)非負(fù)數(shù)的性質(zhì),

mn

完善上述解答過程,然后解答下面的問題:

設(shè)等腰三角形ABC的三邊長a、b、c,且滿足a2b2-4a-6b+13=0,求ABC的周長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

1)作△ABC關(guān)于點(diǎn)C成中心對稱的△A1B1C1

2)將△A1B1C1向右平移4個(gè)單位,作出平移后的△A2B2C2

3)在x軸上求作一點(diǎn)P,使PA1+PC2的值最小,并寫出點(diǎn)P的坐標(biāo)(不寫解答過程,直接寫出結(jié)果)

查看答案和解析>>

同步練習(xí)冊答案