【題目】如圖是二次函數(shù)y=ax2+bx+c的圖象的一部分,對稱軸是直線x=1.
①b2>4ac; ②4a-2b+c<0; ③不等式ax2+bx+c>0的解集是x≥3.5; ④若(-2,y1),(5,y2)是拋物線上的兩點,則y1<y2.
上述4個判斷中,正確的是( )
A. ①② B. ①④ C. ①③④ D. ②③④
【答案】B
【解析】試題分析:根據(jù)拋物線與x軸有兩個交點可得b2﹣4ac>0,進而判斷①正確;
根據(jù)題中條件不能得出x=﹣2時y的正負,因而不能得出②正確;
如果設(shè)ax2+bx+c=0的兩根為α、β(α<β),那么根據(jù)圖象可知不等式ax2+bx+c>0的解集是x<α或x>β,由此判斷③錯誤;
先根據(jù)拋物線的對稱性可知x=﹣2與x=4時的函數(shù)值相等,再根據(jù)二次函數(shù)的增減性即可判斷④正確.
解:①∵拋物線與x軸有兩個交點,
∴b2﹣4ac>0,
∴b2>4ac,故①正確;
②x=﹣2時,y=4a﹣2b+c,而題中條件不能判斷此時y的正負,即4a﹣2b+c可能大于0,可能等于0,也可能小于0,故②錯誤;
③如果設(shè)ax2+bx+c=0的兩根為α、β(α<β),那么根據(jù)圖象可知不等式ax2+bx+c>0的解集是x<α或x>β,故③錯誤;
④∵二次函數(shù)y=ax2+bx+c的對稱軸是直線x=1,
∴x=﹣2與x=4時的函數(shù)值相等,
∵4<5,
∴當拋物線開口向上時,在對稱軸的右邊,y隨x的增大而增大,
∴y1<y2,故④正確.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】一次數(shù)學知識競賽中,競賽題共30題,規(guī)定:答對一道題得4分,不答或答錯一道題倒扣2分,若得分不低于60分者獲獎,則獲獎?wù)咧辽俅饘?/span>_____道題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小麗購買學習用品的收據(jù)如下表所示,因污損導致部分數(shù)據(jù)無法識別,根據(jù)下表,解決下列問題.
(1)小麗買了自動鉛筆、記號筆各幾支?
(2)若小麗再次購買軟皮筆記本和自動鉛筆兩種文具,共花費15元,則有哪幾種不同的購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】當k取任意實數(shù)時,拋物線y=﹣9(x﹣k)2﹣3k2的頂點所在的曲線的解析式是( )
A.y=3x2
B.y=9x2
C.y=﹣3x2
D.y=﹣9x2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com