19、a,b,c三個(gè)數(shù)的平均數(shù)是6,則2a-3,2b-2,2c+5的平均數(shù)是
12
分析:只要運(yùn)用求平均數(shù)公式:$overline{x}=frac{{{x_1}+{x_2}+…+{x_n}}}{n}$即可求出.
解答:解:由題意得,(a+b+c)÷3=6,
∴a+b+c=18.
2a-3、2b-2、2c+5的平均數(shù)=(2a-3+2b-2+2c+5)÷3=[2(a+b+c)-0]÷3=36÷3=12.
故填12.
點(diǎn)評(píng):本題考查的是樣本平均數(shù)的求法.熟記公式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀以下材料并填空.
平面上有n個(gè)點(diǎn)(n≥2),且任意三個(gè)點(diǎn)不在同一條直線(xiàn)上,過(guò)這些點(diǎn)作直線(xiàn),一共能作出多少條不同的直線(xiàn)?
試探究以下問(wèn)題:平面上有n(n≥3)個(gè)點(diǎn),任意三個(gè)點(diǎn)不在同一直線(xiàn)上,過(guò)任意三點(diǎn)作三角形,一共能作出多少不同的三角形?
(1)分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線(xiàn);當(dāng)僅有3個(gè)點(diǎn)時(shí),可作
 
條直線(xiàn);當(dāng)有4個(gè)點(diǎn)時(shí),可作
 
條直線(xiàn);當(dāng)有5個(gè)點(diǎn)時(shí),可作
 
條直線(xiàn);
(2)歸納:考察點(diǎn)的個(gè)數(shù)n和可作出的直線(xiàn)的條數(shù)Sn,發(fā)現(xiàn):(填下表)
點(diǎn)的個(gè)數(shù) 可連成直線(xiàn)的條數(shù)
2  
3  
4  
5  
 
n  
(3)推理:
 
;
(4)結(jié)論:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下列材料并填空.
平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一條直線(xiàn)上,過(guò)其中的每?jī)牲c(diǎn)畫(huà)直線(xiàn),一共能作出多少條不同的直線(xiàn)?
①分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線(xiàn);當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線(xiàn);當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線(xiàn);當(dāng)有5個(gè)點(diǎn)時(shí),可連成10條直線(xiàn)…
②歸納:考察點(diǎn)的個(gè)數(shù)和可連成直線(xiàn)的條數(shù)Sn發(fā)現(xiàn):如下表
點(diǎn)的個(gè)數(shù) 可作出直線(xiàn)條數(shù)
2 1=S2=
2×1
2
3 3=S3=
3×2
2
4 6=S4=
4×3
2
5 10=S5=
5×4
2
n Sn=
n(n-1)
2
③推理:平面上有n個(gè)點(diǎn),兩點(diǎn)確定一條直線(xiàn).取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法,所以一共可連成n(n-1)條直線(xiàn),但AB與BA是同一條直線(xiàn),故應(yīng)除以2;即Sn=
n(n-1)
2
④結(jié)論:Sn=
n(n-1)
2
試探究以下幾個(gè)問(wèn)題:平面上有n個(gè)點(diǎn)(n≥3),任意三個(gè)點(diǎn)不在同一條直線(xiàn)上,過(guò)任意三個(gè)點(diǎn)作三角形,一共能作出多少不同的三角形?
(1)分析:
當(dāng)僅有3個(gè)點(diǎn)時(shí),可作出
 
個(gè)三角形;
當(dāng)僅有4個(gè)點(diǎn)時(shí),可作出
 
個(gè)三角形;
當(dāng)僅有5個(gè)點(diǎn)時(shí),可作出
 
個(gè)三角形;

(2)歸納:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù)Sn,發(fā)現(xiàn):(填下表)
點(diǎn)的個(gè)數(shù) 可連成三角形個(gè)數(shù)
3
4
5
n
(3)推理:
(4)結(jié)論:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀以下材料并填空.
平面上有n個(gè)點(diǎn)(n≥2),且任意三個(gè)點(diǎn)不在同一直線(xiàn)上,過(guò)這些點(diǎn)作直線(xiàn),一共能作出多少條不同的直線(xiàn)?
(1)分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線(xiàn);
當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線(xiàn);
當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線(xiàn);
當(dāng)有5個(gè)點(diǎn)時(shí),可連成10條直線(xiàn);

(2)歸納:考察點(diǎn)的個(gè)數(shù)n和可連成直線(xiàn)的條數(shù)Sn,發(fā)現(xiàn):
(3)推理:平面上有n個(gè)點(diǎn),兩點(diǎn)確定一條直線(xiàn).取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法,所以一共可連成n(n-1)條直線(xiàn),但AB與BA是同一條直線(xiàn),故應(yīng)除以2,即Sn=
n(n-1)
2

(4)結(jié)論:Sn=
n(n-1)
2

點(diǎn)的個(gè)數(shù) 可連成直線(xiàn)條數(shù)
2  l=S2=
2×1
2
3 3=S3=
3×2
2
4  6=S4=
4×3
2
5  10=S5=
5×4
2
n  Sn=
n(n-1)
2
試探究以下問(wèn)題:
平面上有n(n≥3)個(gè)點(diǎn),任意三個(gè)點(diǎn)不在同一直線(xiàn)上,過(guò)任意三點(diǎn)作三角形,一共能作出多少不同的三角形?
①分析:
當(dāng)僅有3個(gè)點(diǎn)時(shí),可作
 
個(gè)三角形;
當(dāng)有4個(gè)點(diǎn)時(shí),可作
 
個(gè)三角形;
當(dāng)有5個(gè)點(diǎn)時(shí),可作
 
個(gè)三角形;

②歸納:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù)Sn,發(fā)現(xiàn):
點(diǎn)的個(gè)數(shù) 可連成三角形個(gè)數(shù)
3  
4  
5  
n  
③推理:
 

取第一個(gè)點(diǎn)A有n種取法,
取第二個(gè)點(diǎn)B有(n-1)種取法,
取第三個(gè)點(diǎn)C有(n-2)種取法,
但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個(gè)三角形,故應(yīng)除以6.
④結(jié)論:
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

試探究以下問(wèn)題:平面上有n(n≥3)個(gè)點(diǎn),任意三個(gè)點(diǎn)不在同一直線(xiàn)上,過(guò)任意三點(diǎn)作三角形,一共能作出多少不同的三角形?
(1)分析:當(dāng)僅有3個(gè)點(diǎn)時(shí),可作
 
個(gè)三角形;當(dāng)有4個(gè)點(diǎn)時(shí),可作
 
個(gè)三角形;當(dāng)有5個(gè)點(diǎn)時(shí),可作
 
個(gè)三角形;…
(2)歸納:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù)Sn

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀以下材料并填空:平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一直線(xiàn)上,過(guò)這些點(diǎn)作直線(xiàn)一共能作出多少條不同的直線(xiàn)?
分析:當(dāng)僅有兩個(gè)點(diǎn)時(shí),可連成1條直線(xiàn);當(dāng)有3個(gè)點(diǎn)時(shí),可連成3條直線(xiàn);當(dāng)有4個(gè)點(diǎn)時(shí),可連成6條直線(xiàn),當(dāng)有5個(gè)點(diǎn)時(shí)可連成10條直線(xiàn)…
推導(dǎo):平面上有n個(gè)點(diǎn),因?yàn)閮牲c(diǎn)可確定一條直線(xiàn),所以每個(gè)點(diǎn)都可與除本身之外的其余(n-1)個(gè)點(diǎn)確定一條直線(xiàn),即共有
n(n-1)條直線(xiàn).但因AB與BA是同一條直線(xiàn),故每一條直線(xiàn)都數(shù)了2遍,所以直線(xiàn)的實(shí)際總條數(shù)為
n(n-1)
2

試結(jié)合以上信息,探究以下問(wèn)題:
平面上有n(n≥3)個(gè)點(diǎn),任意3個(gè)點(diǎn)不在同一直線(xiàn)上,過(guò)任意3點(diǎn)作三角形,一共能作出多少個(gè)不同的三角形?
分析:考察點(diǎn)的個(gè)數(shù)n和可作出的三角形的個(gè)數(shù) sn,發(fā)現(xiàn):(填下表)
點(diǎn)的個(gè)數(shù) 可連成的三角形的個(gè)數(shù)
3
1
1
4
4
4
5
10
10
n
n(n-1)(n-2)
6
n(n-1)(n-2)
6
推導(dǎo):
平面上有n個(gè)點(diǎn),過(guò)不在同一直線(xiàn)上的三點(diǎn)可以確定1個(gè)三角形,取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法.取第三個(gè)點(diǎn)C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個(gè)三角形,故應(yīng)除以6,即Sn=
n(n-1)(n-2)
6
平面上有n個(gè)點(diǎn),過(guò)不在同一直線(xiàn)上的三點(diǎn)可以確定1個(gè)三角形,取第一個(gè)點(diǎn)A有n種取法,取第二個(gè)點(diǎn)B有(n-1)種取法.取第三個(gè)點(diǎn)C有(n-2)種取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一個(gè)三角形,故應(yīng)除以6,即Sn=
n(n-1)(n-2)
6

查看答案和解析>>

同步練習(xí)冊(cè)答案