試探究以下問題:平面上有n(n≥3)個點,任意三個點不在同一直線上,過任意三點作三角形,一共能作出多少不同的三角形?
(1)分析:當僅有3個點時,可作
 
個三角形;當有4個點時,可作
 
個三角形;當有5個點時,可作
 
個三角形;…
(2)歸納:考察點的個數(shù)n和可作出的三角形的個數(shù)Sn
分析:順次連接不在同一直線上的三個點可作1個三角形;當有4個點時,可作4個三角形;當有5個點時,可作10個三角形;依此類推當有n個點時,可作
n(n-1)(n-2)
6
個三角形.
解答:解:(1)1,4,10;
(2)當n=3時,可作出的三角形的個數(shù)S3=
3×2×1
6
;
當n=4時,可作出的三角形的個數(shù)S4=
4×3×2
6
;
當n=5時,可作出的三角形的個數(shù)S5=
5×4×3
6
;
當點的個數(shù)是n時,可作出的三角形的個數(shù)Sn=
n(n-1)(n-2)
6

∴Sn=
n(n-1)(n-2)
6
點評:此題考查了規(guī)律總結(jié),運用由特殊到一般的方法,進行歸納總結(jié).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

孔明是一個喜歡探究鉆研的同學(xué),他在和同學(xué)們一起研究某條拋物線y=ax2(a<0)的性質(zhì)時,將一把直角三角板的直角頂點置于平面直角坐標系的原點O,兩直角邊與該拋物線交于A、B兩點,請解答以下問題:
(1)若測得OA=OB=2
2
(如圖1),求a的值;
(2)對同一條拋物線,孔明將三角板繞點O旋轉(zhuǎn)到如圖2所示位置時,過B作BF⊥x軸于點F,測得OF=1,寫出此時點B的坐標,并求點A的橫坐標
 
;
(3)對該拋物線,孔明將三角板繞點O旋轉(zhuǎn)任意角度時驚奇地發(fā)現(xiàn),交點A、B的連線段總經(jīng)過一個固定的點,試說明理由并求出該點的坐標.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

孔明是一個喜歡探究鉆研的同學(xué),他在和同學(xué)們一起研究某條拋物線y=ax2(a<0)的性質(zhì)時,將一把直角三角板的直角頂點置于平面直角坐標系的原點O,兩直角邊與該拋物線交于A、B兩點,請解答以下問題:
(1)若測得數(shù)學(xué)公式(如圖1),求a的值;
(2)對同一條拋物線,孔明將三角板繞點O旋轉(zhuǎn)到如圖2所示位置時,過B作BF⊥x軸于點F,測得OF=1,寫出此時點B的坐標,并求點A的橫坐標______;
(3)對該拋物線,孔明將三角板繞點O旋轉(zhuǎn)任意角度時驚奇地發(fā)現(xiàn),交點A、B的連線段總經(jīng)過一個固定的點,試說明理由并求出該點的坐標.
作業(yè)寶

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:湖南省中考真題 題型:解答題

孔明是一個喜歡探究鉆研的同學(xué),他在和同學(xué)們一起研究某條拋物線y=ax2(a<0)的性質(zhì)時,將一把直角三角板的直角頂點置于平面直角坐標系的原點O,兩直角邊與該拋物線交于A、B兩點,請解答以下問題:
(1)若測得 OA=OB=(如圖1),求a的值;
(2)對同一條拋物線,孔明將三角板繞點O旋轉(zhuǎn)到如圖2所示位置時,過B作BF⊥x軸于點F,測得OF=1,寫出此時點B的坐標,并求點A的橫坐標;
(3)對該拋物線,孔明將三角板繞點O旋轉(zhuǎn)任意角度時驚奇地發(fā)現(xiàn),交點A、B的連線段總經(jīng)過一個固定的點,試說明理由并求出該點的坐標。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

孔明是一個喜歡探究鉆研的同學(xué),他在和同學(xué)們一起研究某條拋物線的性質(zhì)時,將一把直角三角板的直角頂點置于平面直角坐標系的原點,兩直角邊與該拋物線交于、兩點,請解答以下問題:

(1)若測得(如圖1),求的值;

(2)對同一條拋物線,孔明將三角板繞點旋轉(zhuǎn)到如圖2所示位置時,過軸于點,測得,寫出此時點的坐標,并求點橫坐標

(3)對該拋物線,孔明將三角板繞點旋轉(zhuǎn)任意角度時驚奇地發(fā)現(xiàn),交點的連線段總經(jīng)過一個固定的點,試說明理由并求出該點的坐標.

 


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年天津市南開區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

孔明是一個喜歡探究鉆研的同學(xué),他在和同學(xué)們一起研究某條拋物線y=ax2(a<0)的性質(zhì)時,將一把直角三角板的直角頂點置于平面直角坐標系的原點O,兩直角邊與該拋物線交于A、B兩點,請解答以下問題:
(1)若測得(如圖1),求a的值;
(2)對同一條拋物線,孔明將三角板繞點O旋轉(zhuǎn)到如圖2所示位置時,過B作BF⊥x軸于點F,測得OF=1,寫出此時點B的坐標,并求點A的橫坐標______;
(3)對該拋物線,孔明將三角板繞點O旋轉(zhuǎn)任意角度時驚奇地發(fā)現(xiàn),交點A、B的連線段總經(jīng)過一個固定的點,試說明理由并求出該點的坐標.

查看答案和解析>>

同步練習(xí)冊答案