【題目】某商店購進(jìn)甲、乙兩種型號的商品。每件甲種商品的進(jìn)價比每件乙種商品的進(jìn)價少2元,且用80元購進(jìn)甲種商品的數(shù)量與用100元購進(jìn)乙種商品的數(shù)量相同.

1)求甲、乙兩種商品每件的進(jìn)價各為多少元;

2)每件甲種商品售價為12元,每件乙種商品售價為15元,該超市本次購進(jìn)甲種商品的數(shù)量比購進(jìn)乙種商品的數(shù)量的3倍少5件,要使兩種商品全部售出后所獲總利潤超過371元,求該超市本次至少購進(jìn)乙種商品多少件?

【答案】(1)8元;10元 (2)24件

【解析】

1)設(shè)每件乙種商品的進(jìn)價為元,則每件甲種商品的進(jìn)價為元,根據(jù)題意列方程,求解即可;
2)設(shè)購進(jìn)乙種商品個,則購進(jìn)甲種商品個,根據(jù)購進(jìn)甲種商品的數(shù)量比購進(jìn)乙種商品的數(shù)量的3倍少5將甲、乙兩種商品全部售出后,可獲利潤超過371列出不等式組,解此不等式組后得出y的取值范圍,即可列出不同的方案.

1)設(shè)每件乙種商品的進(jìn)價為元,則每件甲種商品的進(jìn)價為

由題意得

解得

經(jīng)檢驗是分式方程的解

答:每件甲種商品的進(jìn)價為8元,每件乙種商品的進(jìn)價為10.

2)設(shè)購進(jìn)乙種商品個,則購進(jìn)甲種商品個,

由題意得

解得

是正整數(shù)

的最小值為24

答:該商店本次至少購進(jìn)乙種商品24.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線yax2+bx+ca≠0)的部分圖象,其頂點坐標(biāo)為(1m),且與x鈾的一個交點在點(3,0)和(40)之間,則下列結(jié)論:①abc0;②ab+c0;③b24acm);④一元二次方程ax2+bx+cm+1有兩個不相等的實數(shù)根,其中正確結(jié)論的個數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知EF分別為正方形ABCD的邊AB,BC的中點,AFDE交于點M,則下列結(jié)論:①∠AME=90°;②∠BAF=EDB;③MD=2AM=4EM;④AM=MF.其中正確結(jié)論的個數(shù)是(  )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線與直線相交于,兩點,且拋物線經(jīng)過點

1)求拋物線的解析式.

2)點是拋物線上的一個動點(不與點重合),過點作直線軸于點,交直線于點.當(dāng)時,求點坐標(biāo);

3)如圖所示,設(shè)拋物線與軸交于點,在拋物線的第一象限內(nèi),是否存在一點,使得四邊形的面積最大?若存在,請求出點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在菱形ABCD中,動點P從點B出發(fā),沿折線BCDB運動.設(shè)點P經(jīng)過的路程為x,△ABP的面積為y.把y看作x的函數(shù),函數(shù)的圖象如圖②所示,則圖②中的b等于( 。

A. B. C. 5D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角ABC中,AB4,點D是邊AC上一點,且AD1,點EAB邊上一點,連接DE,以線段DE為直角邊作等腰直角DEFD、EF三點依次呈逆時針方向),當(dāng)點F恰好落在BC邊上時,則AE的長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形中,,半徑交弦于點,且,若,則陰影部分的面積為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過原點的直線與反比例函數(shù)交于點,與反比例函數(shù) 交于點,過點軸的垂線,過點軸的垂線,兩直線交于點,若的面積為,則的值為_______

查看答案和解析>>

同步練習(xí)冊答案