【題目】小明同學(xué)在計(jì)算一個(gè)多邊形(每個(gè)內(nèi)角小于180°)的內(nèi)角和時(shí),由于粗心少算一個(gè)內(nèi)角,結(jié)果得到的和是2020°,則少算了這個(gè)內(nèi)角的度數(shù)為 _________

【答案】140°

【解析】

n邊形的內(nèi)角和是(n2180°,少計(jì)算了一個(gè)內(nèi)角,結(jié)果得2020°,則內(nèi)角和是(n2180°2020°的差一定小于180度,并且大于0度.因而可以解方程(n2180°≥2020°,多邊形的邊數(shù)n一定是最小的整數(shù)值,從而求出多邊形的邊數(shù),內(nèi)角和,進(jìn)而求出少計(jì)算的內(nèi)角.

設(shè)多邊形的邊數(shù)是n,

依題意有(n2180°≥2020°,

解得:n≥,

則多邊形的邊數(shù)n14;

多邊形的內(nèi)角和是(1421802160°;

則未計(jì)算的內(nèi)角的大小為2160°2020°140°

故答案為:140°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠BAC=90°,AB=6,sinC=,以點(diǎn)A為圓心,AB長為半徑作弧交ACM,分別以B、M為圓心,以大于BM長為半徑作弧,兩弧相交于點(diǎn)N,射線ANBC相交于D,則AD的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A-2,6),且與x軸交于點(diǎn)B,與正比例函數(shù)y=3x的圖象相交于點(diǎn)C,點(diǎn)C的橫坐標(biāo)是1

1)求此一次函數(shù)的解析式;

2)請直接寫出不等式(k-3x+b0的解集;

3)設(shè)一次函數(shù)y=kx+b的圖象與y軸交于點(diǎn)M,點(diǎn)N在坐標(biāo)軸上,當(dāng)△CMN是直角三角形時(shí),請直接寫出所有符合條件的點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.平分,,垂足為,的延長線于點(diǎn),若恰好平分

求證:(1)點(diǎn)的中點(diǎn);

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,1=2,GAD的中點(diǎn),延長BGACE、 FAB上的一點(diǎn),CFADH,下列判斷正確的有( )

A.AD是△ABE的角平分線B.BE是△ABDAD上的中線

C.AH為△ABC的角平分線D.CH為△ACDAD上的高

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=﹣kx+k與反比例函數(shù)y=﹣(k≠0)在同一坐標(biāo)系中的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,AOBO,B=30°,點(diǎn)By=的圖象上,求過點(diǎn)A的反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABBC,CDBC,AB=4,CD=2.P為線段BC上的點(diǎn),設(shè)BC=m

⑴若m=9,

①若BAP∽△CDP,求線段BP的長;

②若BAP∽△CPD,求線段BP的長;

⑵試求m為何值時(shí),使得BAPCDP相似的點(diǎn)P有且只有2個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地下車庫出口處安裝了兩段式欄桿,如圖1所示,點(diǎn)A是欄桿轉(zhuǎn)動(dòng)的支點(diǎn),點(diǎn)E是欄桿兩段的聯(lián)結(jié)點(diǎn).當(dāng)車輛經(jīng)過時(shí),欄桿AEF最多只能升起到如圖2所示的位置,其示意圖如圖3所示(欄桿寬度忽略不計(jì)),其中ABBC, EFBC,AEF=143°,AB=AE=1.3米,那么適合該地下車庫的車輛限高標(biāo)志牌為多少米?(結(jié)果精確到0.1.參考數(shù)據(jù):sin 37° ≈ 0.60,cos 37° ≈ 0.80,tan 37° ≈ 0.75)

查看答案和解析>>

同步練習(xí)冊答案