已知拋物線y=-x2+mx+n經(jīng)過點A(1,0),B(O,-6).
(1)求拋物線的解析式;
(2)拋物線與x軸交于另一點D,求△ABD的面積;
(3)當y<0,直接寫出自變量x的取值范圍.
解(1)∵拋物線y=-x2+mx+n經(jīng)過點A(1,0),B(O,-6),
-1+m+n=0
n=-6
,
解得
m=7
n=-6

∴拋物線的解析式為:y=-x2+7x-6;

(2)令y=0,則-x2+7x-6=0,
整理得,x2-7x+6=0,
解得,x=6或1,
所以,點D(6,0),
因而AD=6-1=5,
∴S△ABD=
1
2
×5×6=15;

(3)∵a=-1<0,
∴y<0時,x<1或x>6.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖①,已知正方形AOBC的邊長為3,A、B兩點分別在y軸和x軸的正半軸上,以D(0,1)為旋轉(zhuǎn)中心,將DB逆時針旋轉(zhuǎn)90°,得到線段DE,拋物線以點E為頂點,且經(jīng)過點A.

(1)求拋物線解析式并判斷點B是否在拋物線上;
(2)如圖②,判斷直線AE與正方形AOBC的外接圓的位置關(guān)系,并說明理由;
(3)若在拋物線上有點P,在拋物線的對稱軸上有點Q,使得以O(shè)、B、P、Q為頂點的四邊形是平行四邊形,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=x2-ax+a2-4a-4與x軸相交于點A和點B,與y軸相交于點D(0,8),直線DC平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從C點出發(fā),沿C→D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A→B運動,連接PQ、CB,設(shè)點P運動的時間為t秒.
(1)求a的值;
(2)當四邊形ODPQ為矩形時,求這個矩形的面積;
(3)當四邊形PQBC的面積等于14時,求t的值.
(4)當t為何值時,△PBQ是等腰三角形?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)圖象的頂點坐標為M(2,0),直線y=x+2與該二次函數(shù)的圖象交于A、B兩點,其中點A在y軸上(如圖示)
(1)求該二次函數(shù)的解析式;
(2)P為線段AB上一動點(A、B兩端點除外),過P作x軸的垂線與二次函數(shù)的圖象交于點Q,設(shè)線段PQ的長為l,點P的橫坐標為x,求出l與x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍;
(3)在(2)的條件下,線段AB上是否存在一點P,使四邊形PQMA為梯形?若存在,求出點P的坐標,并求出梯形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,某校的圍墻由一段相同的凹曲拱組成,其拱狀圖形為拋物線的一部分,柵欄的跨徑AB間,按相同間隔0.2米用5根立柱加固,拱高OC為0.36米,則立柱EF的長為(  )
A.0.4米B.0.16米C.0.2米D.0.24米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y1=x2-1交x軸的正半軸于點A,交y軸于點B,將此拋物線向右平移4個單位得拋物線y2,兩條拋物線相交于點C.
(1)請直接寫出拋物線y2的解析式;
(2)若點P是x軸上一動點,且滿足∠CPA=∠OBA,求出所有滿足條件的P點坐標;
(3)在第四象限內(nèi)拋物線y2上,是否存在點Q,使得△QOC中OC邊上的高h有最大值?若存在,請求出點Q的坐標及h的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2-2ax+c與y軸交于點C,與x軸交于A、B兩點,點A的坐標是(-1,0),O是坐標原點,且OC=3OA.點E為線段BC上的動點(點E不與點B,C重合),以E為頂點作∠OEF=45°,射線ET交線段OB于點F.
(1)求出此拋物線函數(shù)表達式,并直接寫出直線BC的解析式;
(2)求證:∠BEF=∠COE;
(3)當△EOF為等腰三角形時,求此時點E的坐標;
(4)點P為拋物線的對稱軸與直線BC的交點,點M在x軸上,點N在拋物線上,是否存在以點A、M、N、P為頂點的平行四邊形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

據(jù)統(tǒng)計每年由于汽車超速行駛而造成的交通事故是造成人員死亡的主要原因之一.行駛中的汽車,在剎車后由于慣性的原因,還要繼續(xù)向前滑行一段距離才能停住,這段距離稱為“剎車距離”.為了測定某種型號汽車的剎車性能(車速不超過140千米/時),對這種汽車的剎車距離進行測試,測得的數(shù)據(jù)如下表:
剎車時車速(千米/時)051015202530
剎車距離(米)00.10.30.611.52.1
(1)在如圖所示的直角坐標系中以車速為x軸,以剎車距離為y軸描出這些數(shù)據(jù)所表示的點,并用光滑的曲線連接這些點,得到某函數(shù)的大致圖象.
(2)觀察圖象估計函數(shù)的類型,并確定一個滿足這些數(shù)據(jù)的函數(shù)解析式.
(3)一輛該型號的汽車在國道上發(fā)生了交通事故,現(xiàn)場測得剎車距離為46.5米,請推測剎車時速度是多少?請問在事故發(fā)生時,汽車是否超速行駛?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

直線l過點A(4,0)和B(0,4)兩點,它與二次函數(shù)y=ax2的圖象在第一象限內(nèi)交于點P,若S△AOP=
9
2
,求二次函數(shù)關(guān)系式.

查看答案和解析>>

同步練習冊答案