【題目】在菱形ABCD中,∠ABC=60°,E是對角線AC上一點(diǎn),F(xiàn)是線段BC延長線上一點(diǎn),且CF=AE,連接BE、EF.
(1)若E是線段AC的中點(diǎn),如圖1,易證:BE=EF(不需證明);
(2)若E是線段AC或AC延長線上的任意一點(diǎn),其它條件不變,如圖2、圖3,線段BE、EF有怎樣的數(shù)量關(guān)系,直接寫出你的猜想;并選擇一種情況給予證明.
【答案】
(1)證明:∵四邊形ABCD為菱形,
∴AB=BC,
又∵∠ABC=60°,
∴△ABC是等邊三角形,
∵E是線段AC的中點(diǎn),
∴∠CBE= ∠ABC=30°,AE=CE,
∵AE=CF,
∴CE=CF,
∴∠F=∠CEF,
∵∠F+∠CEF=∠ACB=60°,
∴∠F=30°,
∴∠CBE=∠F,
∴BE=EF;
(2)證明:圖2:BE=EF.
圖3:BE=EF.
圖2證明如下:過點(diǎn)E作EG∥BC,交AB于點(diǎn)G,
∵四邊形ABCD為菱形,
∴AB=BC,
又∵∠ABC=60°,
∴△ABC是等邊三角形,
∴AB=AC,∠ACB=60°,
又∵EG∥BC,
∴∠AGE=∠ABC=60°,
又∵∠BAC=60°,
∴△AGE是等邊三角形
∴AG=AE,
∴BG=CE,
又∵CF=AE,
∴GE=CF,
又∵∠BGE=∠ECF=120°,
∴△BGE≌△ECF(SAS),
∴BE=EF;
圖3證明如下:過點(diǎn)E作EG∥BC交AB延長線于點(diǎn)G,
∵四邊形ABCD為菱形,
∴AB=BC,
又∵∠ABC=60°,
∴△ABC是等邊三角形,
∴AB=AC,∠ACB=60°,
又∵EG∥BC,
∴∠AGE=∠ABC=60°,
又∵∠BAC=60°,
∴△AGE是等邊三角形,
∴AG=AE,
∴BG=CE,
又∵CF=AE,
∴GE=CF,
又∵∠BGE=∠ECF=60°,
∴△BGE≌△ECF(SAS),
∴BE=EF.
【解析】(1)根據(jù)菱形的性質(zhì)結(jié)合∠ABC=60°可得△ABC是等邊三角形,再根據(jù)等腰三角形三線合一的性質(zhì)可得∠CBE=∠ABC=30°,AE=CE,所以CE=CF,然后由等邊對等角的性質(zhì)可得∠F=∠CEF,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和求出∠F=30°,從而得到∠CBE=∠F,根據(jù)等角對等邊的性質(zhì)即可證明;(2)圖2,過點(diǎn)E作EG∥BC,構(gòu)造全等三角形△BGE≌△ECF,由已知可得BG=CE,GE=CF,∠BGE=∠ECF=120°,可證明△BGE和△ECF 全等,根據(jù)全等三角形對應(yīng)邊相等即可得證;圖3,證明思路與方法與圖2完全相同.
【考點(diǎn)精析】通過靈活運(yùn)用菱形的性質(zhì),掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點(diǎn),且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長EF交AD的延長線于G,當(dāng)FG=1時,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,過點(diǎn)A引射線AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過翻折,使點(diǎn)B落在射線AH上的點(diǎn)G處,折痕AE交BC于E,延長EG交CD于F.
(感知)(1)如圖①,當(dāng)點(diǎn)H與點(diǎn)C重合時,猜想FG與FD的數(shù)量關(guān)系,并說明理由.
(探究)(2)如圖②,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時,(1)中結(jié)論是否仍然成立?請說明理由.
(應(yīng)用)(3)在圖②中,當(dāng)DF=3,CE=5時,直接利用探究的結(jié)論,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,點(diǎn)E,F(xiàn)分別是AB,BC邊的中點(diǎn),連接AF,CE交于點(diǎn)M,連接BM并延長交CD于點(diǎn)N,連接DE交AF于點(diǎn)P,則結(jié)論:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE= :3;⑤S△EPM= S梯形ABCD , 正確的個數(shù)有( )
A.5個
B.4個
C.3個
D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,S△ABC=8,點(diǎn)M,P,N分別是邊AB,BC,AC上任意一點(diǎn),則:
(1)AB的長為____________.
(2)PM+PN的最小值為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)C(﹣3,0),點(diǎn)A,B分別在x軸,y軸的正半軸上,且滿足 +|OA﹣1|=0
(1)求點(diǎn)A,點(diǎn)B的坐標(biāo).
(2)若點(diǎn)P從C點(diǎn)出發(fā),以每秒1個單位的速度沿射線CB運(yùn)動,連結(jié)AP.設(shè)△ABP的面積為S,點(diǎn)P的運(yùn)動時間為t秒,求S與t的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(3)在(2)的條件下,是否存在點(diǎn)P,使以點(diǎn)A,B,P為頂點(diǎn)的三角形與△AOB相似?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 的對稱軸為直線 ,與 軸的一個交點(diǎn)坐標(biāo)為(-1,0),其部分圖象如圖所示,下列結(jié)論:
① ;② 方程 的兩個根是 ;③ ;④當(dāng) 時, 的取值范圍是 ;⑤ 當(dāng) 時, 隨 增大而增大;其中結(jié)論正確有.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(3,0),(0,1),點(diǎn)D是線段BC上的動點(diǎn)(與端點(diǎn)B、C不重合),過點(diǎn)D作直線y=﹣x+m交折線OAB于點(diǎn)E.
(1)請寫出m的取值范圍 ;
(2)記△ODE的面積為S,求S與m的函數(shù)關(guān)系式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com