【題目】下列說法正確的是( )
A. 各有一個角是的兩個等腰三角形相似 B. 各有一個角是的兩個等腰三角形相似
C. 有兩邊對應(yīng)成比例的兩個等腰三角形相似 D. 兩腰對應(yīng)成比例的兩個等腰三角形相似
【答案】A
【解析】
根據(jù)三角形內(nèi)角和為180°可以判定A中三角形為鈍角三角形且對應(yīng)角相等,B、C、D無法判定三角形相似,故可以A、B、C、D選項(xiàng)的正確性,即可解題.
A、有一個內(nèi)角為100°的三角形中,100°角必須為頂角,所以三角形三角為100°、40°、40°,即可判定三角形相似,故本選項(xiàng)正確;
B、45°可能是頂角,可能是底角,故無法判定兩個三角形內(nèi)角均相等,故本選項(xiàng)錯誤;
C、等腰三角形腰長相等,故兩腰長對應(yīng)成比例的兩個三角形無法判定三角形相似,故本選項(xiàng)錯誤;
D、兩腰長對應(yīng)成比例的兩個三角形無法判定三角形相似,故本選項(xiàng)錯誤,
故選A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,BC=2,E、F分別為射線BC,CD上兩個動點(diǎn),且滿足BE=CF,設(shè)AE,BF交于點(diǎn)G,連接DG,則DG的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),四邊形OABC是矩形,點(diǎn)B的坐標(biāo)為(10,6),點(diǎn)P為BC邊上的動點(diǎn),當(dāng)△POA為等腰三角形時,點(diǎn)P的坐標(biāo)為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場第一次用元購進(jìn)某款機(jī)器人進(jìn)行銷售,很快銷售一空,商家又用元第二次購進(jìn)同款機(jī)器人,所購進(jìn)數(shù)量是第一次的倍,但單價貴了元.
(1)求該商家第一次購進(jìn)機(jī)器人多少個?
(2)若所有機(jī)器人都按相同的標(biāo)價銷售,要求全部銷售完畢的利潤率不低于不考慮其他因素,那么每個機(jī)器人的標(biāo)價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A、C的坐標(biāo)分別是(﹣1,0)和(2,0),以OC為直徑作圓⊙P,AB切⊙P于點(diǎn)B,交y軸于點(diǎn)E.點(diǎn)M是劣弧上一動點(diǎn),CM交BP于點(diǎn)N,BM交x軸于點(diǎn)D.
(1)求點(diǎn)E的坐標(biāo);
(2)當(dāng)點(diǎn)M在弧BO上運(yùn)動時,PD﹣PN的值是否變化?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某家具生產(chǎn)廠生產(chǎn)某種配套桌椅(一張桌子,兩把椅子),已知每塊板材可制作桌子1張或椅子4把,現(xiàn)計(jì)劃用120塊這種板材生產(chǎn)一批桌椅(不考慮板材的損耗),設(shè)用x塊板材做桌子,用y塊板材做椅子,則下列方程組正確的是( 。
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O外一點(diǎn),AB=AC,連接BC,交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:DE與⊙O相切.
(2)若∠B=30°,AB=4,則圖中陰影部分的面積是 (結(jié)果保留根號和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:
①2a+b=0;
②當(dāng)﹣1≤x≤3時,y<0;
③若(x1,y1)、(x2,y2)在函數(shù)圖象上,當(dāng)x1<x2時,y1<y2
④9a+3b+c=0
其中正確的是( 。
A. ①②④ B. ①②③ C. ①④ D. ③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com