【題目】已知正比例函數(shù)y=kx經(jīng)過點(diǎn)A , 點(diǎn)A在第四象限,過點(diǎn)A作AH⊥x軸,垂足為點(diǎn)H , 點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3.
(1)求正比例函數(shù)的解析式;
(2)在x軸上能否找到一點(diǎn)P , 使△AOP的面積為5?若存在,求點(diǎn)P的坐標(biāo);若不存在,請說明理由.
【答案】
(1)解:如圖:
∵點(diǎn)A的橫坐標(biāo)為3,且△AOH的面積為3
∴點(diǎn)A的縱坐標(biāo)為-2,點(diǎn)A的坐標(biāo)為(3,-2),
∵正比例函數(shù)y=kx經(jīng)過點(diǎn)A ,
∴3k=-2解得k= ,
∴正比例函數(shù)的解析式是y= x
(2)解:∵△AOP的面積為5,點(diǎn)A的坐標(biāo)為(3,-2),
∴OP=5,
∴點(diǎn)P的坐標(biāo)為(5,0)或(-5,0)
【解析】(1)根據(jù)A的橫坐標(biāo)為3,且△AOH的面積為3可求點(diǎn)A的縱坐標(biāo)為-2,把點(diǎn)A的坐標(biāo)代入y=kx可求k的值,則解析式可求;(2)根據(jù)△AOP的面積為5且點(diǎn)A的坐標(biāo)為(3,-2),可求點(diǎn)P的坐標(biāo)。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青年旅社有60間客房供游客居住,在旅游旺季,當(dāng)客房的定價為每天200元時,所有客房都可以住滿.客房定價每提高10元,就會有1個客房空閑,對有游客入住的客房,旅社還需要對每個房間支出20元/每天的維護(hù)費(fèi)用,設(shè)每間客房的定價提高了x元.
(1)填表(不需化簡)
入住的房間數(shù)量 | 房間價格 | 總維護(hù)費(fèi)用 | |
提價前 | 60 | 200 | 60×20 |
提價后 |
|
|
|
(2)若該青年旅社希望每天純收入為14000元且能吸引更多的游客,則每間客房的定價應(yīng)為多少元?(純收入=總收入﹣維護(hù)費(fèi)用)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ACB=90°,AC=BC,BE⊥CE于點(diǎn)E,AD⊥CE于點(diǎn)D,下面四個結(jié)論:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD-BE=DE.其中正確的是 (將你認(rèn)為正確結(jié)論的序號都寫上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)P(t,0)在x軸上,B是線段PA的中點(diǎn).將線段PB繞著點(diǎn)P順時針方向旋轉(zhuǎn)90°,得到線段PC,連結(jié)OB、BC.
(1)判斷△PBC的形狀,并簡要說明理由;
(2)當(dāng)t>0時,試問:以P、O、B、C為頂點(diǎn)的四邊形能否為平行四邊形?若能,求出相應(yīng)的t的值?若不能,請說明理由;
(3)當(dāng)t為何值時,△AOP與△APC相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( 。
A. 在Rt△ABC中,∠C=90°,若tanA= ,則a=3,b=4
B. 若△ABC三邊之比為1: ,且∠A為最小角,則sinA=
C. 對于銳角α,必有sinα>cosα
D. 在Rt△ABC中,若∠C=90°,則sin2A+cos2A=1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com