精英家教網 > 初中數學 > 題目詳情

【題目】如圖,∠ACB=90°,AC=BC,BE⊥CE于點E,AD⊥CE于點D,下面四個結論:①∠ABE=∠BAD;②△CEB≌△ADC;③AB=CE;④AD-BE=DE.其中正確的是 (將你認為正確結論的序號都寫上).

【答案】①②④
【解析】解:

∵BE⊥CE于點E,AD⊥CE于點D ,
∴ ∠BEF=∠ADF=90°,
又∵∠BFE=∠AFD
∴∠ABE=∠BAD ;故 ① 正確
∵∠1+∠2=90° ,∠2+∠CAD=90°
∴∠1=∠CAD ,
又∠E=∠ADC=90°,AC=BC
∴△CEB≌△ADC (AAS), 故 ②正確
∴CE=AD,BE=CD
∴AD-BE=DE , 故 ④ 正確;
而③不能證明,
故答案為 :①、②、④
根據垂直的定義得出∠BEF=∠ADF=90° ,根據等頂角相等及三角形的內角和得出∠ABE=∠BAD ;故 ① 正確 ;根據同角的余角相等得出∠1=∠CAD ,從而利用AQAS判斷出△CEB≌△ADC ,故 ②正確;根據全等三角形對應邊相等得出CE=AD,BE=CD ,根據等式的性質得出AD-BE=DE , 故 ④ 正確; 從而得出答案。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,AB= ,點E、F分別在BC、CD上,且∠BAE=30°,∠DAF=15度.

(1)求證:DF+BE=EF;
(2)求∠EFC的度數;
(3)求△AEF的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】一件服裝標價200元,若以6折銷售,仍可獲利20%,則這件服裝的進價是(
A.100元
B.105元
C.108元
D.118元

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,點A,B的坐標分別為(1,0),(02),若將線段AB平移到A1B1,點A1,B1的坐標分別為(2a),(b,3),則a22b的值為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,H是△ABC的高AD,BE的交點,且DH=DC,則下列結論:①BD=AD;②BC=AC;③BH=AC;④CE=CD中,正確的有( )

A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市為提倡節(jié)約用水,準備實行自來水階梯計費方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行超價收費,為更好地決策,自來水公司隨機抽取了部分用戶的用水量數據,并繪制了如圖不完整的統(tǒng)計圖(每組數據包括右端點但不包括左端點),請你根據統(tǒng)計圖解答下列問題:

(1)此次抽樣調查的樣本容量是________

(2)補全頻數分布直方圖,求扇形圖中“15噸~20部分的圓心角的度數;

(3)如果自來水公司將基本用水量定為每戶25噸,那么該地區(qū)6萬用戶中約有多少用戶的用水全部享受基本價格?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】列方程或方程組解應用題:

某校為美化校園,計劃對一些區(qū)域進行綠化,安排了甲、乙兩個工程隊完成,已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且兩隊在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用4天,求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知正比例函數y=kx經過點A , 點A在第四象限,過點AAHx軸,垂足為點H , 點A的橫坐標為3,且△AOH的面積為3.
(1)求正比例函數的解析式;
(2)在x軸上能否找到一點P , 使△AOP的面積為5?若存在,求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為鼓勵大眾創(chuàng)業(yè),萬眾創(chuàng)新,某市政府出臺了相關政策:由政府協(xié)調,本市企業(yè)按成本價提供產品給大學畢業(yè)生自主銷售,成本價與出廠價之間的差價由政府承擔.李明按照相關政策投資銷售本市生產的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價為每件10元,出廠價為每件12元,每月銷售量y(件)與銷售單價x(元)之間的關系近似滿足一次函數:y=﹣10x+500.
(1)李明在開始創(chuàng)業(yè)的第一個月將銷售單價定為20元,那么政府這個月為他承擔的總差價為多少元?
(2)設李明獲得的利潤為w(元),當銷售單價定為多少元時,每月可獲得最大利潤?
(3)物價部門規(guī)定,這種節(jié)能燈的銷售單價不得高于25元.如果李明想要每月獲得的利潤不低于3000元,那么政府為他承擔的總差價最少為多少元?

查看答案和解析>>

同步練習冊答案