【題目】已知反比例函數(shù)y=(m為常數(shù))的圖象在一,三象限.

(1)求m的取值范圍;

(2)如圖,若該反比例函數(shù)的圖象經(jīng)過ABOD的頂點D,點A、B的坐標(biāo)分別為(0,4),(﹣3,0).

①求出函數(shù)解析式;

②設(shè)點P是該反比例函數(shù)圖象上的一點,若OD=OP,則P點的坐標(biāo)為多少?

【答案】(1)m<(2)①y=,②(4,3),(﹣3,﹣4),(﹣4,﹣3).

【解析】

(1)根據(jù)反比例函數(shù)的性質(zhì)得1-2m>0,然后解不等式即可;

(2)①根據(jù)平行四邊形的性質(zhì)得ADOB,AD=OB,則可確定D(2,3),然后根據(jù)反比例函數(shù)圖象上點的坐標(biāo)特征求出k,從而得到解析式;

②利用反比例函數(shù)關(guān)于原點和直線y=x對稱的性質(zhì)去確定P點坐標(biāo).

(1)根據(jù)題意得1﹣2m>0,

解得m<

(2)①∵四邊形ABOD為平行四邊形,

ADOB,AD=OB,

而點A,B的坐標(biāo)分別為(0,4),(﹣3,0),

D(3,4);

D(3,4)代入y=k=4×3=12,

∴反比例函數(shù)解析式為y=,

②∵反比例函y=的圖象關(guān)于原點對稱,

OD=OP時,

∴點D關(guān)于原點對稱的點為P點,此時P(﹣3,﹣4),

∵反比例函y=的圖象關(guān)于直線y=x對稱,

∴點D關(guān)于直線y=x對稱的點為P點,此時P(4,3),

同樣求出點(4,3)關(guān)于原點的對稱點(﹣4,﹣3)也滿足要求,

P點坐標(biāo)為(4,3),(﹣3,﹣4),(﹣4,﹣3).

故答案為(4,3),(﹣3,﹣4),(﹣4,﹣3).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=(x-2)2+m的圖象與y軸交于點C,點B是點C關(guān)于該二次函數(shù)圖象的對稱軸對稱的點.已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點A(1,0)及點B.

(1)m的值與一次函數(shù)的解析式;

(2)拋物線上是否存在一點P,使SABP=SABC?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)的圖像與軸、軸分別交于點、,以為邊在第二象限內(nèi)作等邊

1)求點的坐標(biāo);

2)在第二象限內(nèi)有一點,使,求點的坐標(biāo);

3)將沿著直線翻折,點落在點處;再將繞點順時針方向旋轉(zhuǎn)15°,點落在點處,過點軸于.求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形的長為15,寬為10,高為20,點離點的距離為5,螞蟻如果要沿著長方形的表面從點爬到點,需要爬行的最短距離是(

A.35B.C.25D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)發(fā)現(xiàn):如圖1,點為線段外一動點,且,當(dāng)點位于 時,線段的長取得最大值,最大值為 (用含的式子表示);

2)應(yīng)用:如圖2,點為線段外一動點,,以為邊作等邊,連接,求線段的最大值;

3)拓展:如圖3,線段,點為線段外一動點,且,,求線段長的最大值及此時的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+b的圖象經(jīng)過A(0,﹣2),B(1,0)兩點,與反比例函數(shù)y=的圖象在第一象限內(nèi)的交點為M(m,4).

(1)求一次函數(shù)和反比例函數(shù)的表達(dá)式;

(2)在x軸上是否存在點P,使AM⊥MP?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用配方法解下列方程時,配方有錯誤的是( )

A.x2﹣2x﹣99=0化為(x﹣1)2=100

B.x2+8x+9=0化為(x+4)2=25

C.2t2﹣7t﹣4=0化為(t﹣2=

D.3x2﹣4x﹣2=0化為(x﹣2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個粒子在軸上及第一象限內(nèi)運動,第1次從運動到,第2次從運動到,第3次從運動到,它接著按圖中箭頭所示的方向運動.則第2019次時運動到達(dá)的點為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點F、C是⊙O上兩點,且點C為弧BF的中點,連接AC、AF,過點C作CD⊥AF交AF延長線于點D.

(1)求證:CD是⊙O的切線;

(2)判斷線段AB、AF與AD之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案