【題目】在平面直角坐標(biāo)系xOy中,直線y=2x+b與雙曲線交于A,B兩點(diǎn).P是線段AB上一點(diǎn)(不與點(diǎn)A,點(diǎn)B重合),過點(diǎn)P作平行于x軸的直線交雙曲線于點(diǎn)M,過點(diǎn)P作平行于y軸的直線交雙曲線于點(diǎn)N.
(1)當(dāng)點(diǎn)A的橫坐標(biāo)為1時(shí),求b的值:
(2)在(1)的條件下,設(shè)P點(diǎn)的橫坐標(biāo)為m,
①若m=-1,判斷PM與PN的數(shù)量關(guān)系,并說明理由;
②若PM<PN,結(jié)合函數(shù)圖象,直接寫出m的取值范圍.
【答案】(1)b=3;(2)PM=PN,理由見解析;(3)當(dāng)-1<m<1時(shí),PM<PN
【解析】
(1)利用求出點(diǎn)A的縱坐標(biāo),再將點(diǎn)A的坐標(biāo)代入y=2x+b即可得到答案;
(2)①由(1)得到y=2x+3,由此得到點(diǎn)P的坐標(biāo),根據(jù)PM∥x軸,PN∥y軸代入求出M、N的坐標(biāo)得到線段PM、PN的長(zhǎng)度即可判斷出PM=PN;
②由圖象知點(diǎn)P與點(diǎn)C(-1,1)重合時(shí),PM=PN,當(dāng)點(diǎn)P在線段AC上時(shí),PM縮小,PN增長(zhǎng),由此即可求出m的取值范圍.
(1)∵點(diǎn)A的橫坐標(biāo)是1,
∴=5,
∴點(diǎn)A的坐標(biāo)為(1,5),
將點(diǎn)A的坐標(biāo)代入y=2x+b,得2+b=5,
解得b=3;
(2)PM=PN,
①由(1)得到y=2x+3,
∵m=-1,
∴y=-2+3=1,
∴點(diǎn)P的坐標(biāo)為(-1,1),
∵PM∥x軸,
∴點(diǎn)M的縱坐標(biāo)是1,
將y=1代入得x=5,
∴M(5,1),
∴PM=5-(-1)=6,
∵PN∥y軸,
∴點(diǎn)N的橫坐標(biāo)是-1,
將x=-1代入得y=-5,
∴點(diǎn)N的坐標(biāo)是(-1,-5),
∴PN=1-(-5)=6,
∴PM=PN;
②由圖象知:當(dāng)點(diǎn)P與點(diǎn)C(-1,1)重合時(shí),PM=PN,當(dāng)點(diǎn)P在線段AC上時(shí),PM縮小,PN增長(zhǎng),
∴當(dāng)-1<m<1時(shí),PM<PN.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為某三岔路口交通環(huán)島的簡(jiǎn)化模型,在某高峰時(shí)段,單位時(shí)間進(jìn)出口,,的機(jī)動(dòng)車輛數(shù)如圖所示,圖中,,分別表示該時(shí)段單位時(shí)間通過路段,,的機(jī)動(dòng)車輛數(shù)(假設(shè):?jiǎn)挝粫r(shí)間內(nèi),在上述路段中,同一路段上駛?cè)肱c駛出的車輛數(shù)相等).
(1)若,__________.
(2)與的等量關(guān)系為__________.
(3),,的大小關(guān)系為__________.(用>連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師為了了解班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查.他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:較差,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:
(1)請(qǐng)計(jì)算出A類男生和C類女生的人數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)為了共同進(jìn)步,張老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)機(jī)抽取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠B=90°,AB=BC=12cm,點(diǎn)D從點(diǎn)A出發(fā)沿邊AB以2cm/s的速度向點(diǎn)B移動(dòng),移動(dòng)過程中始終保持DE∥BC,DF∥AC(點(diǎn)E、F分別在AC、BC上).設(shè)點(diǎn)D移動(dòng)的時(shí)間為t秒.
(1)試判斷四邊形DFCE的形狀,并說明理由;
(2)當(dāng)t為何值時(shí),四邊形DFCE的面積等于20cm2?
(3)如圖2,以點(diǎn)F為圓心,FC的長(zhǎng)為半徑作⊙F,在運(yùn)動(dòng)過程中,當(dāng)⊙F與四邊形DFCE只有1個(gè)公共點(diǎn)時(shí),請(qǐng)直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,按以下步驟作圖:
①分別以點(diǎn)C和點(diǎn)D為圓心,大于的同樣的長(zhǎng)為半徑作弧,兩弧交于M,N兩點(diǎn);
②作直線MN,交CD于點(diǎn)E,連接BE.
若直線MN恰好經(jīng)過點(diǎn)A,則下列說法錯(cuò)誤的是( )
A.ABC60°
B.
C.若AB4,則BE
D.tanCBE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中AC,BD相交于點(diǎn)O,點(diǎn)E是OA的中點(diǎn),連接BE并延長(zhǎng)AD于點(diǎn)F,已知△AEF的面積=1,則平行四邊形ABCD的面積是( 。
A.24B.18C.12D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知是的直徑,切于點(diǎn),交于另一點(diǎn).
(1)求證:;
(2)若是上一動(dòng)點(diǎn),則
①當(dāng) 時(shí),以,,,為頂點(diǎn)的四邊形是正方形;
②當(dāng) 時(shí),以,,,為頂點(diǎn)的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)接到一批防護(hù)服生產(chǎn)任務(wù),按要求15天完成,已知這批防護(hù)服的出廠價(jià)為每件80元,為按時(shí)完成任務(wù),該企業(yè)動(dòng)員放假回家的工人及時(shí)返回加班趕制.該企業(yè)第天生產(chǎn)的防護(hù)服數(shù)量為件,與之間的關(guān)系可以用圖中的函數(shù)圖象來刻畫.
(1)直接寫出與的函數(shù)關(guān)系式________;
(2)由于疫情加重,原材料緊缺,防護(hù)服的成本前5天為每件50元,從第6天起每件防護(hù)服的成本比前一天增加2元,設(shè)第天創(chuàng)造的利潤(rùn)為元,直接利用(1)的結(jié)論,求與之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大,最大利潤(rùn)是多少元?(利潤(rùn)=出廠價(jià)-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某社區(qū)購(gòu)買甲、乙兩種樹苗進(jìn)行綠化,購(gòu)買一棵甲種樹苗的價(jià)錢比購(gòu)買一棵乙種樹苗的價(jià)錢多 10 元錢,已知購(gòu)買 20 棵甲種樹苗、30 棵乙種樹苗共需 1 200 元錢.
(1)求購(gòu)買一棵甲種、一棵乙種樹苗各多少元?
(2)社區(qū)決定購(gòu)買甲、乙兩種樹苗共 400 棵,總費(fèi)用不超過 10 600 元,那么該社區(qū)最多可以購(gòu)買多少棵甲種樹苗?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com