【題目】已知四邊形中,,,,,,將繞點(diǎn)旋轉(zhuǎn),它的兩邊分別交邊、(或它們的延長線)于點(diǎn)、.
(1)當(dāng)繞點(diǎn)旋轉(zhuǎn)到時(shí)(如圖1),
①求證:;
②求證:;
(2)當(dāng)繞點(diǎn)旋轉(zhuǎn)到如圖2所示的位置時(shí),,此時(shí),(1)中的兩個(gè)結(jié)論是否還成立?請直接回答.
【答案】(1)①詳見解析;②詳見解析;(2)①不成立,②成立.
【解析】
(1)①根據(jù)AB=BC,∠A=∠C,AE=CF即可得證;
②先證△BEF為等邊三角形,進(jìn)而得到EF=BE=BF,再由結(jié)合,可得,進(jìn)而可證得,再用等量代換即可得證;
(2)延長FC至G,使AE=CG,連接BG,先證△BAE≌△BCG,再證△GBF≌△EBF即可.
(1)①證明:,,
.
在△ABE和△CBF中,
(SAS).
②證明:由①知,
,.
,
是等邊三角形,
.
又,
.
,
.
,
.
(2)如圖2,延長FC至G,使CG=AE,連接BG,
在△BAE和△BCG中,
,
∴△BAE≌△BCG(SAS),
∴∠ABE=∠CBG,BE=BG,
∵∠ABC=120°,∠EBF=60°,
∴∠ABE+∠CBF=60°,
∴∠CBG+∠CBF=60°,
∴∠GBF=∠EBF,
在△GBF和△EBF中,
,
∴△GBF≌△EBF(SAS),
∴EF=GF=CF+CG=CF+AE,
∴①不成立,②成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某市開展的環(huán)境創(chuàng)優(yōu)活動(dòng)中,居民小區(qū)要在一塊靠墻(墻長)的空地上修建一個(gè)矩形花園,花園的一邊靠墻,另三邊用總長為的柵欄圍成,若設(shè)花園靠墻的一邊長為,花園的面積為.
(1)求與之間的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(2)滿足條件的花園面積能達(dá)到嗎?若能,求出此時(shí)的值,若不能,請說明理由;
(3)根據(jù)(1)中求得的函數(shù)關(guān)系式,判斷當(dāng)取何值時(shí),花園的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=-x2+(n-1)x+3的圖像與y軸交于點(diǎn)A,與x軸的負(fù)半軸交于點(diǎn)B(-2,0)
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P是這個(gè)二次函數(shù)圖像在第二象限內(nèi)的一線,過點(diǎn)P作y軸的垂線與線段AB交于點(diǎn)C,求線段PC長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,.動(dòng)點(diǎn)分別從點(diǎn)同時(shí)出發(fā),點(diǎn)以每秒1個(gè)單位的速度沿勻速運(yùn)動(dòng).點(diǎn)沿折線向終點(diǎn)勻速運(yùn)動(dòng),在上的速度分別是每秒個(gè)單位、每秒2個(gè)單位.當(dāng)點(diǎn)停止時(shí),點(diǎn)也隨之停止運(yùn)動(dòng).連按,將繞著點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,連按,設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為.
(1)用含的代數(shù)式表示的長.
(2)當(dāng)點(diǎn)與的頂點(diǎn)重合時(shí),求的長.
(3)設(shè)的面積為,求與之間的函數(shù)關(guān)系式.
(4)點(diǎn)出發(fā)后,當(dāng)與的邊所夾的角被平分時(shí),直按寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在等腰中,為中線,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn);得到線段連接交直線于點(diǎn),連接.
(1)若,則 ;
(2)若是鈍角時(shí),
①請?jiān)趫D2中依題意補(bǔ)全圖形,并標(biāo)出對應(yīng)字母;
②探究圖2中的形狀,并說明理由;
③若則 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月18日,臺灣省花蓮善線發(fā)生里氏級地震,救援隊(duì)救援時(shí),利用生命探測儀在某建筑物廢墟下方探測到點(diǎn)處有生命跡象,已知廢墟一側(cè)地面上兩探測點(diǎn)相距6米,探測線與地面的夾角分別為和,如圖所示,試確定生命所在點(diǎn)的深度(結(jié)果精確到米,參考數(shù)據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,3).延長CB交x軸于點(diǎn)A1,作正方形A1B1C1C;延長C1B1交x軸于點(diǎn)A2,作正方形A2B2C2C1,…,按這樣的規(guī)律進(jìn)行下去,第2017個(gè)正方形的面積為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過點(diǎn).
(1)當(dāng)時(shí),若點(diǎn)在該二次函數(shù)的圖象上,求該二次函數(shù)的表達(dá)式;
(2)已知點(diǎn),在該二次函數(shù)的圖象上,求的取值范圍;
(3)當(dāng)時(shí),若該二次函數(shù)的圖象與直線交于點(diǎn),,且,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com