如下圖是兩個等邊△ABC、等邊△CDE的紙片疊放在一起的圖形.

精英家教網(wǎng)

(1)固定△ABC,將△CDE繞點C按順時針方向旋轉(zhuǎn)30°,連AD,BE,線段BE、AD之間的大小關(guān)系如何?證明你的結(jié)論;
(2)若將△CDE繞點C按順時針方向任意旋轉(zhuǎn)一個角度,連AD、BE,線段BE、AD之間大小關(guān)系如何?證明你的結(jié)論.
(1)BE=AD.
證明:∵△CDE繞點C按順時針方向旋轉(zhuǎn)30°,
∴∠BCE=∠ACD=30°,
又CA=CB,CD=CE,
∴△BCE≌△ACD,
∴BE=AD.

(2)BE=AD,
證明:∵△CDE繞點C按順時針方向旋轉(zhuǎn)a,
∴∠BCE=∠ACD=a,
又CA=CB,CD=CE,
∴△BCE≌△ACD,
∴BE=AD.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

32、如下圖是兩個等邊△ABC、等邊△CDE的紙片疊放在一起的圖形.

(1)固定△ABC,將△CDE繞點C按順時針方向旋轉(zhuǎn)30°,連AD,BE,線段BE、AD之間的大小關(guān)系如何?證明你的結(jié)論;
(2)若將△CDE繞點C按順時針方向任意旋轉(zhuǎn)一個角度,連AD、BE,線段BE、AD之間大小關(guān)系如何,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006-2007年濠江區(qū)初中數(shù)學(xué)統(tǒng)考題 題型:044

如下圖,△ABC為等邊三角形,邊長為1.△BCD是頂角為BDC且∠BDC=120°的等腰三角形.以D為頂點作一個60°的角,角的兩邊分別交AB,AC于M,N,延長AC至E點,使CE=BM,連接DE.

(1)圖中有兩個三角形是互相旋轉(zhuǎn)而得到的嗎?若有,指出這兩個三角形.并指出旋轉(zhuǎn)中心及旋轉(zhuǎn)角的度數(shù);

(2)圖中有成軸對稱圖形的兩個三角形嗎?若有,請指出,并指明對稱軸;

(3)求出△AMN的周長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如下圖是兩個等邊△ABC、等邊△CDE的紙片疊放在一起的圖形.

(1)固定△ABC,將△CDE繞點C按順時針方向旋轉(zhuǎn)30°,連AD,BE,線段BE、AD之間的大小關(guān)系如何?證明你的結(jié)論;
(2)若將△CDE繞點C按順時針方向任意旋轉(zhuǎn)一個角度,連AD、BE,線段BE、AD之間大小關(guān)系如何?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2008-2009學(xué)年山東省菏澤市鄆城縣九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如下圖是兩個等邊△ABC、等邊△CDE的紙片疊放在一起的圖形.

(1)固定△ABC,將△CDE繞點C按順時針方向旋轉(zhuǎn)30°,連AD,BE,線段BE、AD之間的大小關(guān)系如何?證明你的結(jié)論;
(2)若將△CDE繞點C按順時針方向任意旋轉(zhuǎn)一個角度,連AD、BE,線段BE、AD之間大小關(guān)系如何?證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案