【題目】為了爭創(chuàng)全國文明衛(wèi)生城市,優(yōu)化城市環(huán)境,某市公交公司決定購買10輛全新的混合動力公交車,現(xiàn)有兩種型號,它們的價格及年省油量如下表:
型 號 | ||
價格(萬元/輛) | ||
年省油量(萬升/輛) | 2.4 | 2 |
經(jīng)調(diào)查,購買一輛型車比購買一輛型車多20萬元,購買2輛型車比購買3輛型車少60萬元.
(1)請求出和的值;
(2)若購買這批混合動力公交車(兩種車型都要有), 每年能節(jié)省的油量不低于22.4萬升,請問有幾種購車方案?(不用一一列出)請求出最省錢的購車方案所需的車款.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,過點D作DE∥AC且DE=OC,連接CE、OE,連接AE交OD于點F.
(1)求證:OE=CD;
(2)若菱形ABCD的邊長為4,∠ABC=60°,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=kx+b經(jīng)過點A(5,0),B(1,4).
(1)求直線AB的解析式;
(2)若直線y=2x﹣4與直線AB相交于點C,求點C的坐標;
(3)根據(jù)圖象,寫出關于x的不等式2x﹣4≥kx+b的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC=2,將△ABC繞點C逆時針旋轉得到△A1B1C,旋轉角α(0°<α<90°),連接BB1,設CB1交AB于D,AlB1分別交AB,AC于E,F.
(1)求證:△BCD≌△A1CF;
(2)若旋轉角α為30°,
①請你判斷△BB1D的形狀;
②求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將ABCD的邊AB延長到點E,使BE=AB,連接DE,交邊BC于點F.
(1)求證:△BEF≌△CDF.
(2)連接BD,CE,若∠BFD=2∠A,求證四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在矩形ABCD中,M、N分別是邊AD、BC的中點,E、F分別是線段BM、CM的中點
(1)求證:△ABM≌△DCM
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結論;
(3)當AD:AB= _時,四邊形MENF是正方形(只寫結論,不需證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市籃球隊到市一中選拔一名隊員.教練對王亮和李剛兩名同學進行5次3分球投籃測試,每人每次投10個球,圖記錄的是這兩名同學5次投籃所投中的個數(shù).
(1)請你根據(jù)圖中的數(shù)據(jù),填寫下表;
姓名 | 平均數(shù) | 眾數(shù) | 方差 |
王亮 | 7 | ||
李剛 | 7 | 2.8 |
(2)你認為誰的成績比較穩(wěn)定,為什么?
(3)若你是教練,你打算選誰?簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=3cm,BC=4cm. P、Q分別為AB、BC上的動點,點P從點A出發(fā)沿AB方向作勻速移動的同時,點Q從點B出發(fā)沿BC方向向點C作勻速移動,移動的速度均為1cm/s,設P、Q移動的時間為t(0<t≤4).
(1)當t為何值時,△BPQ與△ABC相似;
(2)當t為何值時,△BPQ是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于A、B兩點,與軸交于點C,拋物線的對稱軸交軸于點D,已知A(-1,0),C(0,2) .
(1)求拋物線的解析式;
(2)點E是線段BC上的一個動點(不與B、C重合),過點E作軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時點E的坐標.
(3)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com