【題目】如圖, 平分, 平分, 和交于點, 為的中點,連結(jié).
()找出圖中所有的等腰三角形.
()若, ,求的長.
【答案】()所有的等腰三角形有: , , , ;().
【解析】試題分析:
(1)由AB∥CD,AC平分∠BAD可得∠C=∠BAC=∠DAC,從而可得AD=CD,得到△ADC是等腰三角形;同理可△ABD是等腰三角形;證∠AED=90°,結(jié)合點F是AD中點,可得EF=FD=FA,從而可得△DEF和△AEF是等腰三角形;即圖中共有4個等腰三角形;
(2)由∠AED=90°,AE=4,DE=3,由勾股定理可得AD=5,結(jié)合點F是AD中點,可得EF=AD=2.5.
試題解析:
()圖中等腰三角形共有4個,分別是: , , , .理由如下:
∵AB∥CD,AC平分∠BAD,
∴∠C=∠BAC,∠BAC=∠DAC,
∴∠C=∠DAC,
∴AD=CD,
∴△ADC是等腰三角形;
同理可得:△ABD是等腰三角形;
∵BD平分∠ADC,AD=CD,
∴BD⊥AC,
∴∠AED=90°,
又∵點F是AD的中點,
∴EF=AF=DF,
∴△AEF和△DEF是等腰三角形;
綜上所述,圖中共有四個等腰三角形,分別是:△ADC、△ABD、△AEF和△DEF;
()∵∠AED=90°,AE=4,DE=3,
∴AD=,
又∵點F是AD的中點,
∴EF=AD=.
科目:初中數(shù)學 來源: 題型:
【題目】瑞士數(shù)學家歐拉是史上最偉大的四個數(shù)學家之一,目前在百度上搜索關(guān)鍵詞“歐拉”,顯示的搜索結(jié)果約為12 600 000條.將12 600 000用科學記數(shù)法表示應(yīng)為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,O為矩形ABCD內(nèi)的一點,滿足OD=OC,若O點到邊AB的距離為d,到邊DC的距離為3d,且OB=2d,求該矩形對角線的長________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】健身運動已成為時尚,某公司計劃組裝、兩種型號的健身器材共套,捐給社區(qū)健身中心。組裝一套型健身器材需甲種部件個和乙種部件個,組裝一套型健身器材需甲種部件個和乙種部件個.公司現(xiàn)有甲種部件個,乙種部件個.
()公司在組裝、兩種型號的健身器材時,共有多少種組裝方案?
()組裝一套型健身器材需費用元,組裝一套型健身器材需費用元,求總組裝費用最少的組裝方案,并求出最少組裝費用?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊中, 是的角平分線, 為上一點,以為一邊且在下方作等邊,連接.
()求證: ≌.
()延長至, 為上一點,連接、使,若,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級6個班舉行畢業(yè)文藝匯演,每班3個節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級統(tǒng)計后發(fā)現(xiàn)歌唱類節(jié)目數(shù)比舞蹈類節(jié)目數(shù)的2倍少6個.設(shè)舞蹈類節(jié)目有個.
(1)用含的代數(shù)式表示:歌唱類節(jié)目有______________個;
(2)求九年級表演的歌唱類與舞蹈類節(jié)目數(shù)各有多少個?
(3)該校七、八年級有小品節(jié)目參與匯演,在歌唱、舞蹈、小品三類節(jié)目中,每個節(jié)目的演出平均用時分別是5分鐘、6分鐘、8分鐘,預計全場節(jié)目交接所用的時間總共16分鐘.若從19:00開始,21:30之前演出結(jié)束,問參與的小品類節(jié)目最多能有多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列具有相反意義的量的是( )
A.向西走20米與向南走30米B.勝2局與負三局
C.氣溫升高3℃與氣溫為-3℃D.盈利8萬元與支出8萬元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】完成下面的證明
如圖,FG//CD,∠1=∠3,∠B=50°,求∠BDE的度數(shù).
解:∵FG//CD (已知)
∴∠2=_________(____________________________)
又∵∠1=∠3,
∴∠3=∠2(等量代換)
∴BC//__________(_____________________________)
∴∠B+________=180°(______________________________)
又∵∠B=50°
∴∠BDE=________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com