【題目】如圖,正方形ABCD的邊長為8,MAB的中點,PBC邊上的動點,連結(jié)PM,以點P為圓心,PM長為半徑作.當與正方形ABCD的邊相切時,BP的長為(

A. 3B. C. 3D. 不確定

【答案】C

【解析】

分兩種情況討論:點⊙P與直線CD相切時,PC=PM,設BP=x,利用勾股定理求出x值即可得答案;當⊙P與直線AD相切,設切點為K,連接PK,則PKAD,PK=PM,可得四邊形PCDK是矩形,則PM=PK=CD,根據(jù)勾股定理求出BP的長即可.

如圖,點⊙P與直線CD相切時,設BP=x,則PM=PC=8-x,

PM2=BP2+,即(8-x)2=x2+42,

解得:x=3.

如圖,當⊙P與直線AD相切時,設切點為K,連接PK,則PM=PK,

K為切點,

PKAD,

∴四邊形PCDK是矩形,

PK=CD,

PM=CD=8

BP===.

綜上所述:BP的長為3.

故選C.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A-10)、B3,0)兩點.

1)求該拋物線的解析式;

2)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足SPAB=10,并求出此時P點的坐標;

3)設(1)中的拋物線交y軸交于C點,在該拋物線的對稱軸上是否存在點Q,使QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.常德市五中487班小玥組設計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

1)這次統(tǒng)計共抽查了 名學生;

2)在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為 度;

3)將條形統(tǒng)計圖補充完整;

4)該校共有1500名學生,請估計該校最喜歡用微信進行溝通的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小王、小張和小梅打算各自隨機選擇本周六的上午或下午去高郵湖的湖上花海去踏青郊游.

(1)小王和小張都在本周六上午去踏青郊游的概率為_______;

(2)求他們?nèi)嗽谕粋半天去踏青郊游的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個水庫的水位在某段時間內(nèi)持續(xù)上漲,表記錄了連續(xù)5小時內(nèi)6個時間點的水位高度,其中表示時間,表示水位高度.

(小時)

0

1

2

3

4

5

(米)

3

3.3

3.6

3.9

4.2

4.5

1)通過觀察數(shù)據(jù),請寫出水位高度(米)與時間(小時)的函數(shù)解析式(不需要寫出定義域);

2)據(jù)估計,這種上漲規(guī)律還會持續(xù),并且當水位高度達到8米時,水庫報警系統(tǒng)會自動發(fā)出警報,請預測再過多久系統(tǒng)會發(fā)出警報.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D、E分別在ACD的邊ABAC上,已知DEBC,DEDB

(1)請用直尺和圓規(guī)在圖中畫出點D和點E(保留作圖痕跡,不要求寫作法),并證明所作的線段DE是符合題目要求的;

(2)若AB=7,BC=3,請求出DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下圖是一組有規(guī)律的圖案,第1個圖案由4個基礎(chǔ)圖形組成,第2個圖案由7個基礎(chǔ)圖形組成,……,則組成第4個圖案的基礎(chǔ)圖形的個數(shù)為( .

A. 11B. 12C. 13D. 14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,地面BD上兩根等長立柱AB,CD之間懸掛一根近似成拋物線y= x2x+3的繩子.

(1)求繩子最低點離地面的距離;

(2)因?qū)嶋H需要,在離AB為3米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點距MN為1米,離地面1.8米,求MN的長;

(3)將立柱MN的長度提升為3米,通過調(diào)整MN的位置,使拋物線F2對應函數(shù)的二次項系數(shù)始終為,設MN離AB的距離為m,拋物線F2的頂點離地面距離為k,當2k2.5時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=x經(jīng)過點A,作ABx軸于點B,將ABO繞點B逆時針旋轉(zhuǎn)60°得到CBD,若點B的坐標為(2,0),則點C的坐標為

查看答案和解析>>

同步練習冊答案