【題目】如圖,在直角△ABC中,∠C=90°,AC=15,BC=20,點(diǎn)D為AB邊上一動(dòng)點(diǎn),若AD的長度為m,且m的范圍為0<m<9,在AC與BC邊上分別取兩點(diǎn)E、F,滿足ED⊥AB,FE⊥ED.
(1)求DE的長度;(用含m的代數(shù)式表示)
(2)求EF的長度;(用含m的代數(shù)式表示)
(3)請根據(jù)m的不同取值,探索過D、E、F三點(diǎn)的圓與△ABC三邊交點(diǎn)的個(gè)數(shù).
【答案】(1);(2) 25-; (3)見解析.
【解析】
(1)先證△ADE∽△ACB,得到=,代入即可得到DE=;
(2)由勾股定理得到AE=,利用兩個(gè)角相等的兩個(gè)三角形相似得到△ADE∽△ECF,利用相似三角形對(duì)應(yīng)邊成比例,得到=,代入即可得到EF=25-;
(3)先分別求出過D、E、F三點(diǎn)的⊙O與AC和BC相切時(shí)m=和m=,再分0<m<,m=,<m<,m=,<m<9,五種情況進(jìn)行說明.
解:(1)∵ED⊥AB,∴∠EDA=90°,∴∠EDA=∠C=90°,
∵∠A=∠A,∴△ADE∽△ACB,
∴=,∴=,
∴DE=;
(2)在RT△ADE中,
AE==,
∵ED⊥AB,FE⊥ED
∴∠EDA=∠DEF=90°,
∴EF∥AB,
∴∠A=∠CEF,
又∵∠EDA=∠C,
∴△ADE∽△ECF,
∴=,∴m:(15-)=:EF,
∴EF=25-.
(3)當(dāng)ED:EF=3:4,⊙O與AC相切于點(diǎn)E,
:(25-)=3:4,m=,
當(dāng)ED:EF=4:3,⊙O與BC相切于點(diǎn)F,
:(25-)=4:3,m=,
情況一:當(dāng)0<m<時(shí),⊙O與△ABC有六個(gè)交點(diǎn);
情況二:當(dāng)m=時(shí),⊙O與△ABC有五個(gè)交點(diǎn);
情況三:當(dāng)<m<時(shí),⊙O與△ABC有六個(gè)交點(diǎn);
情況四:當(dāng)m=時(shí),⊙O與△ABC有五個(gè)交點(diǎn);
情況五:當(dāng)<m<9時(shí),⊙O與△ABC有六個(gè)交點(diǎn).
故答案為:(1);(2) 25-; (3)見解析.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,則AD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)(1,n),與y軸的交點(diǎn)在(0,2),(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①3a+b<0;②﹣1≤a≤﹣;③對(duì)于任意實(shí)數(shù)m,a+b≥am2+bm總成立;④關(guān)于x的方程ax2+bx+c=n﹣1有兩個(gè)不相等的實(shí)數(shù)根.其中結(jié)論正確的個(gè)數(shù)為( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣2x2+4x與x軸交于點(diǎn)O、A,把拋物線在x軸及其上方的部分記為C1,將C1以y鈾為對(duì)稱軸作軸對(duì)稱得到C2,C2與x軸交于點(diǎn)B,若直線y=x+m與C1,C2共有3個(gè)不同的交點(diǎn),則m的取值范圍是( )
A. 0<m< B. <m<
C. 0<m< D. m<或m<
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】光明中學(xué)全體學(xué)生1100人參加社會(huì)實(shí)踐活動(dòng),從中隨機(jī)抽取50人的社會(huì)實(shí)踐活動(dòng)成績制成如圖所示的條形統(tǒng)計(jì)圖,結(jié)合圖中所給信息解答下列問題:
(1)填寫下表:
中位數(shù) | 眾數(shù) | |
隨機(jī)抽取的50人的社會(huì)實(shí)踐活動(dòng)成績(單位:分) |
(2)估計(jì)光明中學(xué)全體學(xué)生社會(huì)實(shí)踐活動(dòng)成績的總分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2=的圖象交于點(diǎn)A(﹣1,3)、B(n,﹣1).
(1)求反比例函數(shù)的解析式;
(2)當(dāng)y1>y2時(shí),直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;
(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱軸是x=﹣1,且過點(diǎn)(,0),有下列結(jié)論:①abc>0;②a﹣2b+4c=0;③25a+4c=10b;④3b+2c>0;⑤a﹣b≥m(am﹣b);其中所有錯(cuò)誤的結(jié)論有( 。﹤(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=90°,且OA、OB分別與反比例函數(shù)y=(x>0)、y=﹣(x<0)的圖象交于A、B兩點(diǎn),則tan∠OAB的值是( 。
A. B. C. 1 D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com