【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y=的圖象的一個(gè)交點(diǎn)為A(﹣1,n)
(1)求反比例函數(shù)y=的表達(dá)式.
(2)若兩函數(shù)圖象的另一交點(diǎn)為B,直接寫出B的坐標(biāo).
【答案】(1);(2)點(diǎn)B的坐標(biāo)是(1,﹣2).
【解析】
(1)把A的坐標(biāo)代入y=﹣2x,求出n,得出A的坐標(biāo),再把A的坐標(biāo)代入反比例函數(shù)的解析式求出k即可;
(2)根據(jù)正比例函數(shù)與反比例函數(shù)的交點(diǎn)關(guān)于原點(diǎn)對(duì)稱,即可得出答案.
(1)∵點(diǎn)A(﹣1,n)在一次函數(shù)y=﹣2x的圖象上,∴代入得:n=(﹣2)×(﹣1)=2,∴點(diǎn)A的坐標(biāo)為(﹣1,2).
∵點(diǎn)A在反比例函數(shù)的圖象上,∴k=(﹣1)×2=﹣2,∴反比例函數(shù)的解析式為.
(2)∵正比例函數(shù)與反比例函數(shù)的交點(diǎn)關(guān)于原點(diǎn)對(duì)稱,∴函數(shù)y=﹣2x的圖象與反比例函數(shù)的圖象的另一個(gè)交點(diǎn)B的坐標(biāo)是(1,﹣2).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“江畔”禮品店在十一月份從廠家購進(jìn)甲、乙兩種不同禮品.購進(jìn)甲種禮品共花費(fèi)1500元,購進(jìn)乙種禮品共花費(fèi)1050元,購進(jìn)甲種禮品數(shù)量是購進(jìn)乙種禮品數(shù)量的2倍,且購進(jìn)一件乙種禮品比購進(jìn)一件甲種禮品多花20元.
(1)求購進(jìn)一件甲種禮品、一件乙種禮品各需多少元;
(2)元旦前夕,禮品店決定再次購進(jìn)甲、乙兩種禮品共50個(gè).恰逢該廠家對(duì)兩種禮品的價(jià)格進(jìn)行調(diào)整,一件甲種禮品價(jià)格比第一次購進(jìn)時(shí)提高了30%,件乙種禮品價(jià)格比第次購進(jìn)時(shí)降低了10元,如果此次購進(jìn)甲、乙兩種禮品的總費(fèi)用不超過3100元,那么這家禮品店最多可購進(jìn)多少件甲種禮品?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)要經(jīng)營一種新上市的文具,進(jìn)價(jià)為20元,試營銷階段發(fā)現(xiàn):當(dāng)銷售單價(jià)是25元時(shí),每天的銷售量為250件,銷售單價(jià)每上漲1元,每天的銷售量就減少10件
(1)寫出商場(chǎng)銷售這種文具,每天所得的銷售利潤(元)與銷售單價(jià)(元)之間的函數(shù)關(guān)系式;
(2)求銷售單價(jià)為多少元時(shí),該文具每天的銷售利潤最大;
(3)商場(chǎng)的營銷部結(jié)合上述情況,提出了A、B兩種營銷方案
方案A:該文具的銷售單價(jià)高于進(jìn)價(jià)且不超過30元;
方案B:每天銷售量不少于10件,且每件文具的利潤至少為25元
請(qǐng)比較哪種方案的最大利潤更高,并說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是關(guān)于的函數(shù),若其函數(shù)圖象經(jīng)過點(diǎn),則稱點(diǎn)為函數(shù)圖象上的“郡點(diǎn)”,例如:上存在“郡點(diǎn)”.
(1)直線___________(填寫直線解析式)上的每一個(gè)點(diǎn)都是“郡點(diǎn)”,雙曲線上的“郡點(diǎn)”是___________;
(2)若拋物線上有“郡點(diǎn)”,且“郡點(diǎn)”、(點(diǎn)和點(diǎn)可以重合)的坐標(biāo)為、,求的最小值.
(3)若函數(shù)的圖象上存在唯一的一個(gè)“郡點(diǎn)”,且當(dāng),的最小值,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】合肥某企業(yè)安排65名工人生產(chǎn)甲、乙兩種產(chǎn)品,每人每天生產(chǎn)2件甲或1件乙,甲產(chǎn)品每件可獲利15元.根據(jù)市場(chǎng)需求和生產(chǎn)經(jīng)驗(yàn),乙產(chǎn)品每天產(chǎn)量不少于5件,當(dāng)每天生產(chǎn)5件時(shí),每件可獲利120元,每增加1件,當(dāng)天平均每件利潤減少2元.設(shè)每天安排x人生產(chǎn)乙產(chǎn)品.
(1)根據(jù)信息填表:
產(chǎn)品種類 | 每天工人數(shù)(人) | 每天產(chǎn)量(件) | 每件產(chǎn)品可獲利潤(元) |
甲 | _______ | _________ | 15 |
乙 | x | x | __________ |
(2)若每天生產(chǎn)甲產(chǎn)品可獲得的利潤比生產(chǎn)乙產(chǎn)品可獲得的利潤多550元,求每件乙產(chǎn)品可獲得的利潤;
(3)該企業(yè)在不增加工人的情況下,增加生產(chǎn)丙產(chǎn)品,要求每天甲、丙兩種產(chǎn)品的產(chǎn)量相等.已知每人每天可生產(chǎn)1件丙(每人每天只能生產(chǎn)一件產(chǎn)品),丙產(chǎn)品每件可獲利30元,求每天生產(chǎn)三種產(chǎn)品可獲得的總利潤W(元)的最大值及相應(yīng)的x值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦EF⊥AB于點(diǎn)C,過點(diǎn)F作⊙O的切線交AB的延長線于點(diǎn)D.
(1)已知∠A=α,求∠D的大小(用含α的式子表示);
(2)取BE的中點(diǎn)M,連接MF,請(qǐng)補(bǔ)全圖形;若∠A=30°,MF=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y=kx(k≠0)與反比例函數(shù)y=﹣的圖象交于點(diǎn)A(x,y),B(x,y)則2xy+xy的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB切⊙O與點(diǎn)A,BE切⊙O于點(diǎn)E,連接AO并延長交⊙O于點(diǎn)C,交BE的延長線于點(diǎn)D,連接EC,若AD=8,tan∠DEC=,則CD=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市將實(shí)行居民生活用電階梯電價(jià)方案,如下表,圖中折線反映了每戶居民每月電費(fèi)(元)與用電量(度)間的函數(shù)關(guān)系.
檔次 | 第一檔 | 第二檔 | 第三檔 |
每月用電量(度) |
(1)小王家某月用電度,需交電費(fèi)___________元;
(2)求第二檔電費(fèi)(元)與用電量(度)之間的函數(shù)關(guān)系式;
(3)小王家某月用電度,交納電費(fèi)元,請(qǐng)你求出第三檔每度電費(fèi)比第二檔每度電費(fèi)多多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com