【題目】為慶祝新中國成立七十周年,某校開展了祖國在我心中手抄報展評活動.小紅同學設計的手抄報如右圖所示,手抄報的外邊框長,,正中央是一個與整個手抄報長寬比例相同的矩形.又知四周邊襯所占面積是手抄報面積的四分之一,上、下邊襯等寬,左、右邊襯等寬,求小紅設計手抄報的四周邊襯的寬度. (精確到)

(參考數(shù)據(jù):,)

【答案】手抄報上、下邊襯寬約為,左、右邊襯的寬約

【解析】

根據(jù)中央矩形的長=封面的長2×上下邊襯的寬,中央矩形的寬=封面的寬2×左右邊襯的寬,再根據(jù)矩形的面積=長×寬列式即可列出方程求解.

:設手抄報上、下邊襯寬為,左、右邊襯的寬為,中央矩形的長為,.根據(jù)題意,得

解方程,得

(舍去)

,

:手抄報上、下邊襯寬約為,左、右邊襯的寬約

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某童裝專賣店在銷售中發(fā)現(xiàn),一款童裝每件進價為80元,銷售價為120元時,每天可售出20.為了增加利潤,減少庫存,商店決定采取適當?shù)慕祪r措施.經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件童裝降價1元,那么可多售出2.設每件童裝降價.

1)降價后,每件盈利______元,每天可銷售______件;(用含的代數(shù)式填空);

2)每件童裝降價多少元時,每天盈利1200元;

3)每件童裝降價多少元時,每天可獲得最大盈利,最大盈利是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,自來水廠A和村莊B在小河PQ的兩側,現(xiàn)要在AB間鋪設一條輸水管道,為了搞好工程預算,需測算出AB間的距離.一小船在點P處測得A在正北方向,B位于南偏東24.方向,前行2.4km,到達點Q處,測得A位于北偏西49°方向,B位于南偏西41°方向.

1)求BQ長度;

2)求AB間的距離(參考數(shù)據(jù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰中,,AD的角平分線,且,以點A為圓心,AD長為半徑畫弧EF,交AB于點E,交AC于點F

1)求由弧EF及線段FC、CB、BE圍成圖形(圖中陰影部分)的面積;

2)將陰影部分剪掉,余下扇形AEF,將扇形AEF圍成一個圓錐的側面,AEAF正好重合,圓錐側面無重疊,求這個圓錐的高h

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax2+x+ca0)與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知點A的坐標為(﹣1,0),點C的坐標為(02).

1)求拋物線的解析式;

2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標;如果不存在,請說明理由;

3)點E是線段BC上的一個動點,過點Ex軸的垂線與拋物線相交于點F,當點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,

1)觀察猜想

如圖1,分別交于點的值是 ,直線與直線相交所成的較小角的度數(shù)是

2)類比探究

如圖2,將繞點逆時針旋轉,請寫出的值及直線與直線相交所成的小角的度數(shù),并就圖2的情形說明理由,

3)解決問題

,請直接寫出點在同一直線上時的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】山西省第十五屆運動會乒乓球比賽于2018813日上午在山西省體育博物館的比賽場館內(nèi)正式拉開了帷幕.第十五屆運動會競技體育組乒乓球項目產(chǎn)生的決賽運動員名單中太原市共27人,其中甲組有甲、乙、丙、丁四名女子運動員,若進行一次乒乓球單打比賽,要通過抽簽從中選出兩名運動員打第一場比賽.

1)若已確定甲打第一場,再從其余三名運動員中隨機選取一位,求恰好選中乙的概率;

2)若兩名運動員都不確定,請用樹狀圖法或列表法,求恰好選中甲、乙兩名運動員的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△A1B1C1,△A2B2C2的周長相等,現(xiàn)有兩個判斷:

A1B1=A2B2,A1C1=A2C2,則△A1B1C1≌△A2B2C2;

∠A1=∠A2,∠B1=∠B2,則△A1B1C1≌△A2B2C2,

對于上述的兩個判斷,下列說法正確的是(  )

A. 正確,錯誤 B. 錯誤,正確 C. ①,②都錯誤 D. ①,②都正確

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(﹣1,0),B(3,0),C(0,1)在拋物線y=ax2+bx+c上.

(1)求拋物線解析式;

(2)在直線BC上方的拋物線上求一點P,使PBC面積為1;

(3)在x軸下方且在拋物線對稱軸上,是否存在一點Q,使∠BQC=BAC?若存在,求出Q點坐標;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案