【題目】如圖所示,E,F分別為平行四邊形ABCD中AD,BC的中點,G,H在BD上,且 BG=DH,求證四邊形EGFH是平行四邊形.
【答案】答案見解析
【解析】試題分析:由四邊形ABCD是平行四邊形,得到AD=BC,AD∥BC,由AD∥BC,得到∠ADB=∠DBC,因為E、F分別為ABCD的邊AD、BC的中點,得到DE=BF,由三角形全等證得EH=FG,∠EHD=∠FGB,得到EH∥FG,證出四邊形FGEH是平行四邊形.
試題解析:證明:∵四邊形ABCD是平行四邊形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC.∵E、F分別為ABCD的邊AD、BC的中點,∴DE=BF.在△DEH與△BFG中,∵DE=BF,∠EDH=∠FBG,DH=BG,∴△DEH≌△BFG,∴EH=FG,∠EHD=∠FGB,∴∠EHG=∠FGH,∴EH∥FG,∴四邊形FGEH是平行四邊形.
科目:初中數(shù)學 來源: 題型:
【題目】某校開展了以“人生觀、價值觀”為主題的班隊活動.活動結(jié)束后,初三(2)班數(shù)學興趣小組提出了5個主要觀點并在本班50名學生中進行了調(diào)査(要求每位同學只選自己最認可的一項觀點),并制成了如圖所示的扇形統(tǒng)計圖.
(1)該班學生選擇“和諧”觀點的有人,在扇形統(tǒng)計圖中,“和諧”觀點所在扇形區(qū)域的圓心角是 .
(2)如果該校有1500名初三學生.利用樣本估計選擇“感恩”觀點的初三學生約有人.
(3)如果數(shù)學興趣小組在這5個主要觀點中任選兩項觀點在全校學生中進行調(diào)查.求恰好選到“和諧”和“感恩”觀點的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公交公司有A,B型兩種客車,它們的載客量和租金如下表:
A | B | |
載客量(人/輛) | 45 | 30 |
租金(元/輛) | 400 | 280 |
某中學根據(jù)實際情況,計劃租用A,B型客車共5輛,同時送七年級師生到基地校參加社會實踐活動.設租用A型客車x輛,根據(jù)要求回答下列問題:
(1)用含x的式子填寫下表:
車輛數(shù)(輛) | 載客量 | 租金(元) | |
A | x | 45x | 400x |
B | 5﹣x |
|
|
(2)若要保證租車費用不超過1900元,求x的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】放風箏是大家喜愛的一種運動.星期天的上午小明在大洲廣場上放風箏.如圖他在A處時不小心讓風箏掛在了一棵樹的樹梢上,風箏固定在了D處.此時風箏線AD與水平線的夾角為30°. 為了便于觀察.小明迅速向前邊移動邊收線到達了離A處7米的B處,此時風箏線BD與水平線的夾角為45°.已知點A、B、C在冋一條直線上,∠ACD=90°.請你求出小明此吋所收回的風箏線的長度是多少米?(本題中風箏線均視為線段, ≈1.414, ≈1.732.最后結(jié)果精確到1米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如下表所示:
A | B | |
進價(萬元/套) | 1.5 | 1.2 |
售價(萬元/套) | 1.65 | 1.4 |
該商場計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤9萬元。
(毛利潤=(售價 - 進價)×銷售量)
(1)該商場計劃購進A,B兩種品牌的教學設備各多少套?
(2)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少數(shù)量的1.5倍。若用于購進這兩種教學設備的總資金不超過69萬元,問A種設備購進數(shù)量至多減少多少套?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某劇院的觀眾席的座位為扇形,且按下列分式設置:
排數(shù)(x) | 1 | 2 | 3 | 4 | … |
座位數(shù)(y) | 50 | 53 | 56 | 59 | … |
(1)按照上表所示的規(guī)律,當x每增加1時,y如何變化?
(2)寫出座位數(shù)y與排數(shù)x之間的關(guān)系式;
(3)按照上表所示的規(guī)律,某一排可能有90個座位嗎?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公園的門票價格如下表所示:
某校九年級甲、乙兩個班共100多人去該公園舉行畢業(yè)聯(lián)歡活動,其中甲班有50多人,乙班不足50人,如果以班為單位分別買門票,兩個班一共應付920元;如果兩個班聯(lián)合起來作為一個團體購票,一共要付515元,問甲、乙兩班分別有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,E是ABCD的邊CD的中點,延長AE交BC的延長線于點F.
(1)求證:△ADE≌△FCE.
(2)若∠BAF=90°,BC=5,EF=3,求CD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com