精英家教網 > 初中數學 > 題目詳情

【題目】如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進20海里到達B點,此時,測得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD等于海里.

【答案】10
【解析】解:根據題意可知∠CAD=30°,∠CBD=60°,
∵∠CBD=∠CAD+∠ACB,
∴∠CAD=30°=∠ACB,
∴AB=BC=20海里,
在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC= ,
∴sin60°= ,
∴CD=20×sin60°=20× =10 海里,
故答案為:10

根據方向角的定義及余角的性質求出∠CAD=30°,∠CBD=60°,再由三角形外角的性質得到∠CAD=30°=∠ACB,根據等角對等邊得出AB=BC=20,然后解Rt△BCD,求出CD即可.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知點A、D、C、F在同一條直線上,AB=DE,BC=EF,要使ABC≌△DEF,還需要添加一個條件是( 。

A. BCA=F B. BCEF C. A=EDF D. AD=CF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=1,BC= ,在AC邊上截取AD=BC,連接BD.

(1)通過計算,判斷AD2與ACCD的大小關系;
(2)求∠ABD的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】家庭過期藥品屬于“國家危險廢物”,處理不當將污染環(huán)境,危害健康.某市藥監(jiān)部門為了解市民家庭處理過期藥品的方式,決定對全市家庭作一次簡單隨機抽樣調査.

(1)下列選取樣本的方法最合理的一種是 .(只需填上正確答案的序號)

在市中心某個居民區(qū)以家庭為單位隨機抽取;在全市醫(yī)務工作者中以家庭為單位隨機抽;在全市常住人口中以家庭為單位隨機抽。

(2)本次抽樣調査發(fā)現,接受調査的家庭都有過期藥品,現將有關數據呈現如圖:

m= ,n= ;

補全條形統計圖;

根據調査數據,你認為該市市民家庭處理過期藥品最常見的方式是什么?

家庭過期藥品的正確處理方式是送回收點,若該市有180萬戶家庭,請估計大約有多少戶家庭處理過期藥品的方式是送回收點.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點C的直線MNAB,DAB邊上一點,過點DDEBC,交直線MNE,垂足為F,連接CDBE.

(1)求證:CEAD;

(2)當DAB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點,則當∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,□ABCD的對角線ACBD相交于點OEF過點O且與AB、CD分別相交于點E、F,連接EC

1)求證:OEOF

2)若EFAC,BEC的周長是10,求□ABCD的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,四邊形ABCD是正方形,點E是邊BC上一點,點F在射線CM上,∠AEF=90°,AE=EF,過點F作射線BC的垂線,垂足為H,連接AC.
(1)試判斷BE與FH的數量關系,并說明理由;
(2)求證:∠ACF=90°;
(3)連接AF,過A、E、F三點作圓,如圖2,若EC=4,∠CEF=15°,求 的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】二維碼已經給我們的生活帶來了很大方便,它是由大小相同的黑白兩色的小正方形(如圖中C型黑白一樣)按某種規(guī)律組成的一個大正方形。現有25×25格式的正方形如圖,角上是三個7×7的A型大黑白相間正方形,中間右下有一個5×5的B型黑白相間正方形((A,B型均由C型黑白兩色小正方形組成),除這4個正方形外,其他的C型小正方形黑色塊數正好是白色塊數的3倍多53塊,則該25×25格式的二維碼中除去A、B型后,有__塊C型白色小正方形,整個二維碼中共有__塊C型白色小正方形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,若將四根木條釘成的矩形木框變成平行四邊形ABCD的形狀,并使其面積為矩形面積的一半,則這個平行四邊形的最大內角等于______

查看答案和解析>>

同步練習冊答案