如圖,在△ABC中,∠C=90°,sinB=
5
7
,F(xiàn)是AB上一點(diǎn),過點(diǎn)F作DF⊥AB于F,交BC于E,交AC延長線于D,連CF,若S△BEF=4S△CDE,CE=5.
(1)求AC的長;(2)求S△CEF
(1)∵∠BFE=∠BCD=90°,∠FEB=∠DEC
∴△BFE△DCE
∵S△BEF=4S△CDE,
∴S△BEF:S△DEC=4:1
∴EF:EC=2:1
∵CE=5,
∴EF=10,
∵sinB=
5
7

∴BE=
70
5
,
∴BC=
95
5

設(shè)AC=5k,則AB=7k
∵AB2-AC2=BC2,
∴49k2-25k2=(
95
5
2
解得k=
19
6
12
(負(fù)值舍去)
∴AC=5×
19
12
6
=
95
6
12
;

(2)∵sinB=
5
7
,BE=
70
5

EF=10;∴BF=4
6

S△BFE=BF×EF÷2=20
6

∵BE:EC=
70
5
:5
∴S△CEF=
50
6
7
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

身高相同的甲、乙、丙三位同學(xué)星期天到野外去比賽放風(fēng)箏,看誰放得高.甲、乙、丙放出的線長分別為300m,250m,200m,線與地平面的夾角分別為30°,45°,60°.假設(shè)風(fēng)箏線是拉直的,請你給三位同學(xué)打一下分?jǐn)?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,從A處觀測C處的俯角β=42°,A到C處的高度AB=120m,則AC的長為______m,水平距離BC為______m(參考數(shù)據(jù):sins42°≈0.669cos42°≈0.743,tan42°≈0.900.結(jié)果精確到1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,河岸上L1L2,位置A位于L1上,位置B位于L2上,A、B的水平距離為120米,垂直距離為30米.小剛要從A游泳過河再步行到B.已知步行速度是游泳速度的2倍.八年級的小剛學(xué)以致用,先設(shè)計(jì)了如下甲、乙、丙三個(gè)方案,你認(rèn)為哪個(gè)方案費(fèi)時(shí)最少?說明理由.(只考慮游泳和步行時(shí)間,其它時(shí)間忽略不計(jì),以下數(shù)據(jù)供選用:
2
≈1.414,
3
≈1.732,
1800
≈42.42,
300
≈17.32)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,大樓高30m,附近有一座塔BC,某人在樓底A處測得塔頂?shù)难鼋菫?0°,爬到樓頂D處測得塔頂?shù)难鼋菫?0°,求塔高BC及大樓與塔之間的距離AC(結(jié)果精確到0.01m,參考數(shù)據(jù):
3
≈1.732,
2
≈1.414

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,河流的兩岸PQ、MN互相平行,河岸PQ上有一排小樹,已知相鄰兩樹之間的距離CD=50米,某人在河岸MN的A處測得∠DAN=35°,然后沿河岸走了120米到達(dá)B處,測得∠CBN=70°.求河流的寬度CE(結(jié)果保留兩個(gè)有效數(shù)字).
(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一艘輪船在40海里/時(shí)的速度由西向東航行,上午8時(shí)到達(dá)A處,測得燈塔P在北偏東60°方向上;10時(shí)到達(dá)B處,測得燈塔P在北偏東30°方向上.當(dāng)輪船到達(dá)燈塔P的正南時(shí),輪船距燈塔P多遠(yuǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(1)解不等式組
x-3≤0
5(x-1)+6>4x
并把解集在數(shù)軸上表示出來;

(2)如圖,已知墻高AB為6.5米,將一長為6米的梯子CD斜靠在墻面,梯子與地面所成的角∠BCD=55°,此時(shí)梯子的頂端與墻頂?shù)木嚯xAD約為多少米?(結(jié)果精確到0.1米)(參考數(shù)據(jù):sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,B,C是河岸邊兩點(diǎn),A是對岸邊上一點(diǎn),測得∠ABC=45°,∠ACB=60°,BC=60米,甲想從A點(diǎn)出發(fā)在最短的時(shí)間內(nèi)到達(dá)BC邊,若他的速度為5米/分,則他所用的最短時(shí)間為______分.

查看答案和解析>>

同步練習(xí)冊答案