【題目】慧秀中學(xué)在防“非典”知識競賽中,評出一等獎4人,二等獎6人,三等獎20人,學(xué)校決定給所有獲獎學(xué)生各發(fā)一份獎品,同一等次的獎品相同.
(1)若一等獎,二等獎、三等獎的獎品分別是噴壺、口罩和溫度計,購買這三種獎品共計花費113元,其中購買噴壺的總錢數(shù)比購買口罩的總錢數(shù)多9元,而口罩的單價比溫度計的單價多2元,求噴壺、口罩和溫度計的單價各是多少元?
(2)若三種獎品的單價都是整數(shù),且要求一等獎的單價是二等獎單價的2倍,二等獎的單價是三等獎單價的2倍,在總費用不少于90元而不足150元的前提下,購買一、二、三等獎獎品時它們的單價有幾種情況,分別求出每種情況中一、二、三等獎獎品的單價.
【答案】(1)噴壺、口罩和溫度計的單價分別是9元、4.5元和2.5元;(2)購買一、二、三等獎獎品時它們的單價有兩種情況:第一種情況中一、二、三等獎獎品的單價分別是8元、4元和2元;第二種情況中一、二、三等獎獎品的單價分別是12元、6元和3元.
【解析】
(1)本題可設(shè)噴壺和口罩的單價分別是y元和z元,然后根據(jù)題意列出方程組,化簡即可得出答案;
(2)本題可設(shè)三等獎獎品的單價為x元,則二等獎獎品的單價為2x元,一等獎獎品的單價為4x元.再根據(jù)題意得不等式組:90≤4×4x+6×2x+20x<150,求出x的取值再代入2x、4x即可.
解:(1)設(shè)噴壺和口罩的單價分別是y元和z元,
根據(jù)題意,得,
解得
所以,z﹣2=2.5
答:噴壺、口罩和溫度計的單價分別是9元、4.5元和2.5元.
(2)設(shè)三等獎獎品的單價為x元,
則二等獎獎品的單價為2x元,一等獎獎品的單價為4x元.
根據(jù)題意,得90≤4×4x+6×2x+20x<150
解得≤x<.
因為三種獎品的單價都是整數(shù),所以x=2或者x=3.
當(dāng)x=2時,2x=4,4x=8;當(dāng)x=3時,2x=6,4x=12.
答:購買一、二、三等獎獎品時它們的單價有兩種情況:第一種情況中一、二、三等獎獎品的單價分別是8元、4元和2元;第二種情況中一、二、三等獎獎品的單價分別是12元、6元和3元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC和△DEC均為等腰三角形,且∠ACB=∠DCE=90°,連接BE,AD,兩條線段所在的直線交于點P.
(1)線段BE與AD有何數(shù)量關(guān)系和位置關(guān)系,請說明理由.
(2)若已知BC=12,DC=5,△DEC繞點C順時針旋轉(zhuǎn),
①如圖2,當(dāng)點D恰好落在BC的延長線上時,求AP的長;
②在旋轉(zhuǎn)一周的過程中,設(shè)△PAB的面積為S,求S的最值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形中,過作于,交于,過作于,交于,連結(jié)、.
求證:;
當(dāng)四邊形滿足什么條件時,四邊形是菱形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC的兩直角邊的長分別為6cm和8cm,則它的外接圓的半徑與內(nèi)切圓半徑的比為 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,,,分別交直線、于點、.
(1)如圖1,當(dāng)時,求證:;
(2)如圖2,當(dāng)時,線段、、之間有何數(shù)量關(guān)系,證明你的結(jié)論;
(3)如圖3,當(dāng)時,旋轉(zhuǎn),問線段之間、、有何數(shù)量關(guān)系?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在10×10的網(wǎng)格中,每個格子都是邊長為1的小正方形,已知△ABC三個頂點的坐標(biāo)分別為A(1,1).B(4,2)、C(3,4).
(1)請畫出將△ABC繞點A順時針旋轉(zhuǎn)90°后得到的△AB1C1;
(2)請畫出△ABC關(guān)于原點O成中心對稱的△A2B2C2;
(3)當(dāng)△ABC繞點A順時針旋轉(zhuǎn)90°后得到△AB1C1,求點C所經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=x﹣2與x軸交于點A,以OA為斜邊在x軸上方作等腰直角三角形OAB,將△OAB沿x軸向右平移,當(dāng)點B落在直線y=x﹣2上時,則△OAB平移的距離是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,將Rt△AOB繞點O順時針旋轉(zhuǎn)90°后得到Rt△FOE,將線段EF繞點E逆時針旋轉(zhuǎn)90°后得到線段ED,分別以O、E為圓心,OA、ED長為半徑畫弧AF和弧DF,連接AD,則圖中陰影部分的面積是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在單位為1的方格紙上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜邊在x軸上,斜邊長分別為2,4,6,…的等直角三角形,若△A1A2A3的頂點坐標(biāo)分別為A1(2,0),A2(1,1),A3(0,0),則依圖中所示規(guī)律,A2019的坐標(biāo)為( )
A.(﹣1008,0)B.(﹣1006,0)C.(2,﹣504)D.(1,505)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com