【題目】計算(1

2

3

【答案】12m24mn3n2;(26x2y;(318a6

【解析】

1)根據(jù)完全平方公式和平方差公式進行計算,然后合并同類項,即可得到答案;

2)先計算積的乘方,然后計算整式乘法和除法,即可得到答案;

3)先計算乘方,然后計算同底數(shù)冪乘法,再合并同類項,即可得到答案.

解:(1)(2m+n)(2mn)﹣2m+n2

4m2n22m24mn2n2

2m24mn3n2

2)(﹣3x2y26xy3)÷(9x3y4

9x4y26xy3÷9x3y4

54x5y5÷9x3y4

6x2y;

3)(2a23+(﹣3a32+a22a2

23×(a23+(﹣32×(a32+a22×a2

8a6+9a6+a6

=(8+9+1a6

18a6.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】為了迎接炎帝故里尋根節(jié),某校開展了主題為炎帝文化知多少的專題調(diào)查活動,采取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為非常了解”“比較了解”“基本了解”“不太了解四個等級,整理調(diào)查數(shù)據(jù)制成了下面的表格和如圖所示的不完整的扇形統(tǒng)計圖.

等級

非常了解

比較了解

基本了解

不太了解

頻數(shù)

50

m

40

20

 

根據(jù)以上提供的信息,解答下列問題:

(1)本次問卷調(diào)查共抽取的學生人數(shù)為________,表中m的值為________;

(2)計算等級為非常了解的頻數(shù)在扇形統(tǒng)計圖中對應扇形的圓心角的度數(shù),并補全扇形統(tǒng)計圖;

(3)若該校有學生1 500人,請根據(jù)調(diào)查結(jié)果估計這些學生中不太了解炎帝文化知識的人數(shù)約為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù))

(1)該函數(shù)的圖像與軸公共點的個數(shù)是(

A.0 B.1 C.2 D.1或2

(2)求證:不論為何值,該函數(shù)的圖像的頂點都在函數(shù)的圖像上.

(3)當時,求該函數(shù)的圖像的頂點縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形ABCD的四個角向內(nèi)折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,EH=12厘米,EF=16厘米,則邊AD的長是(  )

A. 12厘米 B. 16厘米 C. 20厘米 D. 28厘米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=(n為常數(shù),且n0)的圖象在第二象限交于點C.CDx軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個交點為E,求CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一堤壩的坡角∠ABC=60°,坡面長度AB=24米(圖為橫截面).為了使堤壩更加牢固,需要改變堤壩的坡面,為使得坡面的坡角∠ADB=45°,則應將堤壩底端向外拓寬(BD)多少米?(結(jié)果精確到0.1米)(參考數(shù)據(jù):≈1.41,≈1.73)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2019年的暑假,李剛和他的父母計劃去新疆旅游,他們打算坐飛機到烏魯木齊,第二天租用一輛汽車自駕出游.

根據(jù)以上信息,解答下列問題:

1)設租車時間為天,租用甲公司的車所需費用為元,租用乙公司的車所需費用為元,分別求出,關(guān)于的函數(shù)表達式;

2)請你幫助李剛,選擇租用哪個公司的車自駕出游比較合算,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】關(guān)于等腰三角形,以下說法正確的是(

A.有一個角為40°的等腰三角形一定是銳角三角形

B.等腰三角形兩邊上的中線一定相等

C.兩個等腰三角形中,若一腰以及該腰上的高對應相等,則這兩個等腰三角形全等

D.等腰三角形兩底角的平分線的交點到三邊距離相等

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】趙爽(約公元182~250年),我國歷史上著名的數(shù)學家與天文學家,他詳細解釋了《周髀算經(jīng)》中勾股定理,將勾股定理表述為:勾股各自乘,并之為弦實.開方除之,即弦.又給出了新的證明方法趙爽弦圖,巧妙地利用平面解析幾何面積法證明了勾股定理.如圖所示的趙爽弦圖是由四個全等的直角三角形和中間一個小正方形拼成的一個大正方形,如果小正方形的面積為1,直角三角形較長直角邊長為4,則大正方形的面積為_____________________

查看答案和解析>>

同步練習冊答案