【題目】如圖,以AB為直徑的⊙O是△ADC的外接圓,過點O作PO⊥AB,交AC于點E,PC的延長線交AB的延長線于點F,∠PEC=∠PCE.
(1)求證:FC為⊙O的切線;
(2)若△ADC是邊長為a的等邊三角形,求AB的長.(用含a的代數(shù)式表示)
【答案】
(1)證明:連接OC.
∵OA=OC(⊙O的半徑),
∴∠EAO=∠ECO(等邊對等角).
∵PO⊥AB,∴∠EAO+∠AEO=90°(直角三角形中的兩個銳角互余).
∵∠PEC=∠PCE(已知),∠PEC=∠AEO(對頂角相等)
∴∠AEO=∠PCE(等量代換),
∴∠PCO=∠ECO+∠PCE=∠EAO+∠AEO=90°.即OC⊥FC,
∵點C在⊙O上,
∴FC為⊙O的切線
(2)解:連接BC.
∵AB是⊙O的直徑,∴∠ACB=90°.
∵△ADC是邊長為a的等邊三角形,
∴∠ABC=∠D=60°,AC=a.
在Rt△ACB中,∵sin∠ABC=
∴AB= = a.
【解析】(1)連接OC.欲證FC為⊙O的切線,只需證明OC⊥FC即可;(2)連接BC.由等邊三角形的性質(zhì)、“同弧所對的圓周角相等”推知∠ABC=∠ADC=60°;然后在直角△ABC中利用正弦三角函數(shù)的定義來求AB線段的長度.
【考點精析】掌握等邊三角形的性質(zhì)和切線的判定定理是解答本題的根本,需要知道等邊三角形的三個角都相等并且每個角都是60°;切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC的斜邊AB與量角器的直徑恰好重合,B點與0刻度線的一端重合,∠ABC=40°,射線CD繞點C轉(zhuǎn)動,與量角器外沿交于點D,若射線CD將△ABC分割出以BC為邊的等腰三角形,則點D在量角器上對應(yīng)的度數(shù)是( )
A.40°
B.70°
C.70°或80°
D.80°或140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初三年級(1)班要舉行一場畢業(yè)聯(lián)歡會.規(guī)定每個同學(xué)分別轉(zhuǎn)動下圖中兩個可以自由轉(zhuǎn)動的均勻轉(zhuǎn)盤A、B(轉(zhuǎn)盤A被均勻分成三等份.每份分別標(biāo)上1.2,3三個數(shù)宇.轉(zhuǎn)盤B被均勻分成二等份.每份分別標(biāo)上4,5兩個數(shù)字).若兩個轉(zhuǎn)盤停止后指針?biāo)竻^(qū)域的數(shù)字都為偶數(shù)(如果指針恰好指在分格線上.那么重轉(zhuǎn)直到指針指向某一數(shù)字所在區(qū)域為止).則這個同學(xué)要表演唱歌節(jié)目.請求出這個同學(xué)表演唱歌節(jié)目的概率(要求用畫樹狀圖或列表方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2 ,OA=4,將直線l1繞點A逆時針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點C,則OC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】相傳古印度一座梵塔圣殿中,鑄有一片巨大的黃銅板,之上樹立了三米高的寶石柱,其中一根寶石柱上插有中心有孔的64枚大小兩兩相異的一寸厚的金盤,小盤壓著較大的盤子,如圖,把這些金盤全部一個一個地從1柱移到3柱上去,移動過程不許以大盤壓小盤,不得把盤子放到柱子之外.移動之日,喜馬拉雅山將變成一座金山.
設(shè)h(n)是把n個盤子從1柱移到3柱過程中移動盤子之最少次數(shù)
n=1時,h(1)=1;
n=2時,小盤→2柱,大盤→3柱,小盤從2柱→3柱,完成.即h(2)=3;
n=3時,小盤→3柱,中盤→2柱,小盤從3柱→2柱.[即用h(2)種方法把中、小兩盤移到2柱,大盤3柱;再用h(2)種方法把中、小兩盤從2柱3柱,完成;
我們沒有時間去移64個盤子,但你可由以上移動過程的規(guī)律,計算n=6時,h(6)=( )
A.11
B.31
C.63
D.127
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB為⊙O直徑,以O(shè)A為直徑作⊙M.過B作⊙M得切線BC,切點為C,交⊙O于E.
(1)在圖中過點B作⊙M作另一條切線BD,切點為點D(用尺規(guī)作圖,保留作圖痕跡,不寫作法,不用證明);
(2)證明:∠EAC=∠OCB;
(3)若AB=4,在圖2中過O作OP⊥AB交⊙O于P,交⊙M的切線BD于N,求BN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動點,連結(jié)AC并延長交⊙O于D,過點D作圓的切線交OB的延長線于E,已知OA=8.
(1)求證:∠ECD=∠EDC;
(2)若tanA= ,求DE長;
(3)當(dāng)∠A從15°增大到30°的過程中,求弦AD在圓內(nèi)掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+2x經(jīng)過原點O,且與直線y=x﹣2交于B,C兩點.
(1)求拋物線的頂點A的坐標(biāo)及點B,C的坐標(biāo);
(2)求證:∠ABC=90°;
(3)在直線BC上方的拋物線上是否存在點P,使△PBC的面積最大?若存在,請求出點P的坐標(biāo);若不存在,請說明理由;
(4)若點N為x軸上的一個動點,過點N作MN⊥x軸與拋物線交于點M,則是否存在以O(shè),M,N為頂點的三角形與△ABC相似?若存在,請求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com