【題目】如圖,正比例函數(shù)ykx與反比例函數(shù)yx0)的圖象有個交點A,ABx軸于點B.平移正比例函數(shù)ykx的圖象,使其經過點B2,0),得到直線l,直線ly交于點C0,﹣3

1)求km的值;

2)點M是直線OA上一點過點MMNAB,交反比例函數(shù)yx0)的圖象于點N,若線段MN3,求點M的坐標.

【答案】(1),m=6 (2)(,)或(,

【解析】

(1)利用待定系數(shù)法即可解決問題;(2)設點M(x,x),N(x,),利用MN//AB, MN=3,列方程求解即可.

(1)∵直線l與y軸交于點(0,-3),且過點 B(2,0),

設直線l的解析式為y=ax-3,代入點B(2,0),解得a=,

∵直線l與正比例函數(shù)y=kx平行,∴k=a=

∵y=x過點 A,AB⊥x軸于點B,∴A(2,3)

∵y=過點A,∴m=6;

(2)設點M(x,x),N(x,),

∵MN//AB, MN=3, ∴ x-=3,或x-=-3,

解得:,或(舍去負值),

∴點M的坐標為(,)或(,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖示,正方形ABCD的頂點A在等腰直角三角形DEF的斜邊EF上,EF與BC相交于點G,連接CF.

求證:DAE≌△DCF;

求證:ABG∽△CFG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】自2016年國慶后,許多高校均投放了使用手機就可隨用的共享單車.某運營商為提高其經營的A品牌共享單車的市場占有率,準備對收費作如下調整:一天中,同一個人第一次使用的車費按0.5元收取,每增加一次,當次車費就比上次車費減少0.1元,第6次開始,當次用車免費.具體收費標準如下:

使用次數(shù)

0

1

2

3

4

5(含5次以上)

累計車費

0

0.5

0.9

1.5

同時,就此收費方案隨機調查了某高校100名師生在一天中使用A品牌共享單車的意愿,得到如下數(shù)據(jù):

使用次數(shù)

0

1

2

3

4

5

人數(shù)

5

15

10

30

25

15

)寫出的值;

)已知該校有5000名師生,且A品牌共享單車投放該校一天的費用為5800元.試估計:收費調整后,此運營商在該校投放A品牌共享單車能否獲利? 說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:直角梯形OABC中,CBOA,對角線OBAC交于點D,OC=2CB=2,OA=4,點P為對角線CA上的一點,過點PQHOAH,交CB的延長線于點Q,連接BP,如果BPQPHA相似,則點P的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于反比例函數(shù)yk≠0),下列所給的四個結論中,正確的是( 。

A. 若點(2,4)在其圖象上,則(﹣2,4)也在其圖象上

B. k0時,yx的增大而減小

C. 過圖象上任一點Px軸、y軸的垂線,垂足分別A、B,則矩形OAPB的面積為k

D. 反比例函數(shù)的圖象關于直線yxy=﹣x成軸對稱

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在兩建筑物之間有一旗桿,高15米,從A點經過旗桿頂點恰好看到矮建筑物的墻角C點,且俯角α為60°,又從A點測得D點的俯角β為30°,若旗桿底點G為BC的中點,則矮建筑物的高CD為( )

A. 20米 B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】天塔是天津市的標志性建筑之一,某校數(shù)學興趣小組要測量天塔的高度,如圖,他們在點A處測得天塔最高點C的仰角為45°,再往天塔方向前進至點B處測得最高點C的仰角為54°,AB=112m,根據(jù)這個興趣小組測得的數(shù)據(jù),計算天塔的高度CD(tan36°≈0.73,結果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,CAB=90°,ADBC于點D,點EAB的中點,ECAD交于點G,點FBC上.

1)如圖1,ACAB=12,EFCB,求證:EF=CD

2)如圖2,ACAB=1,EFCE,求EFEG的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=16cm,BC=6cm,點P從A出發(fā)沿AB以3cm/s的速度向點B移動,一直到達點B為止;同時,點Q從點C出發(fā)沿以2cm/s的速度向點D移動.經過多長時間P、Q兩點的距離是10?

查看答案和解析>>

同步練習冊答案