【題目】如圖,小明用三個(gè)等腰三角形(圖中①②③)拼成了一個(gè)平行四邊形ABCD,且,則=_____ 度.
【答案】72或
【解析】分兩種情況討論,分別構(gòu)建方程即可解決問題.
由題意可知:AD=DE,∴∠DAE=∠DEA,設(shè)∠DAE=∠DEA=x.
∵四邊形ABCD是平行四邊形,∴CD∥AB,∠C=∠DAB,∴∠DEA=∠EAB=x,∴∠C=∠DAB=2x.
①AE=AB時(shí),若BE=BC,則有∠BEC=∠C,即(180°﹣x)=2x,解得:x=36°,∴∠C=72°;
若EC=EB時(shí),則有∠EBC=∠C=2x.
∵∠DAB+∠ABC=180°,∴4x+(180°﹣x)=180°,解得:x=,∴∠C=,
②EA=EB時(shí),同法可得∠C=72°.
綜上所述:∠C=72°或.
故答案為:72°或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(4分)如圖,直線l外不重合的兩點(diǎn)A、B,在直線l上求作一點(diǎn)C,使得AC+BC的長度最短,作法為:①作點(diǎn)B關(guān)于直線l的對(duì)稱點(diǎn)B′;②連接AB′與直線l相交于點(diǎn)C,則點(diǎn)C為所求作的點(diǎn).在解決這個(gè)問題時(shí)沒有運(yùn)用到的知識(shí)或方法是( )
A.轉(zhuǎn)化思想
B.三角形的兩邊之和大于第三邊
C.兩點(diǎn)之間,線段最短
D.三角形的一個(gè)外角大于與它不相鄰的任意一個(gè)內(nèi)角
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在射線BA,BC,AD,CD圍成的菱形ABCD中,∠ABC=60°,AB=6 ,O是射線BD上一點(diǎn),⊙O與BA,BC都相切,與BO的延長線交于點(diǎn)M.過M作EF⊥BD交線段BA(或射線AD)于點(diǎn)E,交線段BC(或射線CD)于點(diǎn)F.以EF為邊作矩形EFGH,點(diǎn)G,H分別在圍成菱形的另外兩條射線上.
(1)求證:BO=2OM.
(2)設(shè)EF>HE,當(dāng)矩形EFGH的面積為24 時(shí),求⊙O的半徑.
(3)當(dāng)HE或HG與⊙O相切時(shí),求出所有滿足條件的BO的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個(gè)直角∠AOC和∠BOD有公共頂點(diǎn)O,下列結(jié)論:
①∠AOB=∠COD;
②∠AOB+∠COD=;
③若OB平分∠AOC,則OC平分∠BOD;
④∠AOD的平分線與∠BOC的平分線是同一條射線,
其中正確的是 .(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩個(gè)分別含有30°,45°角的一副直角三角板.
(1)如圖1疊放在一起
若OC恰好平分∠AOB,則∠AOD= 度;
若∠AOC=40°,則∠BOD= 度;
(2)如圖2疊放在一起,∠AOD=4∠BOC,試計(jì)算∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A是x軸正半軸上的一個(gè)定點(diǎn),點(diǎn)P是雙曲線 (x>0)上的一個(gè)動(dòng)點(diǎn),PB⊥y軸于點(diǎn)B , 當(dāng)點(diǎn)P的橫坐標(biāo)逐漸增大時(shí),四邊形OAPB的面積將會(huì)( 。
A.逐漸增大
B.不變
C.逐漸減小
D.先增大后減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB的邊OB上的一點(diǎn).
(1)過點(diǎn)M畫OB的平行線MN;
(2)過點(diǎn)P畫OA的垂線,垂足為H;
(3)過點(diǎn)P畫OB的垂線,交OA于點(diǎn)C:
則線段PH的長度是點(diǎn)P到 的距離, 是點(diǎn)C到直線OB的距離,因?yàn)橹本外一點(diǎn)到直線上各點(diǎn)連接的所有線段中,垂線段最短,所以線段PC、PH、OC這三條線段大小關(guān)系是 .(用“<”號(hào)連接).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DE是△ABC的中位線,F(xiàn)是DE的中點(diǎn),CF的延長線交AB于點(diǎn)G,若△CEF的面積為12cm2,則S△DGF的值為( )
A.4cm2 B.6cm2 C.8cm2 D.9cm2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com