【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,切點(diǎn)為B,OC平行于AD,OA=2.
(1)求證:CD是⊙O的切線;
(2)若AD+OC=9,求CD的長(zhǎng).(結(jié)果保留根號(hào))
【答案】
(1)證明:連結(jié)OD.
∵AD∥OC,
∴∠1=∠2,∠A=∠3.
∵OA=OD,
∴∠A=∠1,
∴∠2=∠3,
∴在△ODC與△OBC中,
,
∴△ODC≌△OBC(SAS),
∴∠ODC=∠OBC=90°,即OD⊥CD.
又OD是圓O的半徑,
∴CD是⊙O的切線
(2)證明:連結(jié)BD,
∵AB為⊙O的直徑,∴∠ADB=90°,
∵∠OBC=90°,∴∠ADB=∠OBC
又∠A=∠3,∴△ADB∽△OBC
∴ ,ADOC=OBAB=2×4=8;
又AD+OC=9,
∴AD、OC是關(guān)于x的方程x2﹣9x+8=0的兩個(gè)根.
∵OC>OD,∴OC=8,AD=1,OD=2,
∴CD=
【解析】(1)如圖,連接OD,欲證明CD是⊙O的切線,只需證得∠ODC=90°,即OD⊥CD即可;(2)由△ADB∽△OBC的對(duì)應(yīng)邊成比例求得ADOC=OBAB=2×4=8,結(jié)合已知條件“AD+OC=9”,則AD、OC是關(guān)于x的方程x2﹣9x+8=0的兩個(gè)根.據(jù)此求得OC、OD的值,所以在直角△OCD中,根據(jù)勾股定理來(lái)求線段CD的長(zhǎng)度即可.
【考點(diǎn)精析】掌握勾股定理的概念和切線的判定定理是解答本題的根本,需要知道直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;切線的判定方法:經(jīng)過(guò)半徑外端并且垂直于這條半徑的直線是圓的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖甲是小明設(shè)計(jì)的帶菱形圖案的花邊作品.該作品由形如圖乙的矩形圖案拼接而成(不重疊、無(wú)縫隙).圖乙中 ,EF=4cm,上下兩個(gè)陰影三角形的面積之和為54cm2 , 其內(nèi)部菱形由兩組距離相等的平行線交叉得到,則該菱形的周長(zhǎng)為cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題
(1)計(jì)算: +2﹣1+|﹣ |
(2)化簡(jiǎn):(a﹣3)2+3a(a+2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市計(jì)劃在“十周年”慶典當(dāng)天開(kāi)展購(gòu)物抽獎(jiǎng)活動(dòng),凡當(dāng)天在該超市購(gòu)物的顧客,均有一次抽獎(jiǎng)的機(jī)會(huì),抽獎(jiǎng)規(guī)則如下:將如圖所示的圓形轉(zhuǎn)盤平均分成四個(gè)扇形,分別標(biāo)上1,2,3,4四個(gè)數(shù)字,抽獎(jiǎng)?wù)哌B續(xù)轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,當(dāng)每次轉(zhuǎn)盤停止后指針?biāo)干刃蝺?nèi)的數(shù)為每次所得的數(shù)(若指針指在分界線時(shí)重轉(zhuǎn));當(dāng)兩次所得數(shù)字之和為8時(shí),返現(xiàn)金20元;當(dāng)兩次所得數(shù)字之和為7時(shí),返現(xiàn)金15元;當(dāng)兩次所得數(shù)字之和為6時(shí)返現(xiàn)金10元.
(1)試用樹(shù)狀圖或列表的方法表示出一次抽獎(jiǎng)所有可能出現(xiàn)的結(jié)果;
(2)某顧客參加一次抽獎(jiǎng),能獲得返還現(xiàn)金的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半圓O的直徑AB=10cm,D為 上一點(diǎn),C為 上一點(diǎn),把弓形沿直線AD翻折,C和直徑AB上的點(diǎn)C′重合,若AC=6cm,則AD的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,橫坐標(biāo),縱坐標(biāo)都為整數(shù)的點(diǎn)稱為整點(diǎn),正方形邊長(zhǎng)的整點(diǎn)稱為邊整點(diǎn),如圖,第一個(gè)正方形有4個(gè)邊整點(diǎn),第二個(gè)正方形有8個(gè)邊整點(diǎn),第三個(gè)正方形有12個(gè)邊整點(diǎn),…,按此規(guī)律繼續(xù)作下去,若從內(nèi)向外共作了5個(gè)這樣的正方形,那么其邊整點(diǎn)的個(gè)數(shù)共有個(gè),這些邊整點(diǎn)落在函數(shù)y= 的圖象上的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】全面二孩政策定于2016年1月1日正式實(shí)施,武侯區(qū)某年級(jí)組隊(duì)該年級(jí)部分學(xué)生進(jìn)行了隨機(jī)問(wèn)卷調(diào)查,其中一個(gè)問(wèn)題是“你爸媽如果給你添一個(gè)弟弟(或妹妹),你的態(tài)度是什么?”共有如下四個(gè)選項(xiàng)(要求僅選擇一個(gè)選項(xiàng)):
A.非常愿意 B.愿意 C.不愿意 D.無(wú)所謂
如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解答以下問(wèn)題:
(1)試問(wèn)本次問(wèn)卷調(diào)查一共調(diào)查了多少名學(xué)生?并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該年級(jí)共有300名學(xué)生,請(qǐng)你估計(jì)全年級(jí)可能有多少名學(xué)生支持(即態(tài)度為“非常愿意”和“愿意”)爸媽給自己添一個(gè)弟弟(或妹妹)?
(3)在年級(jí)活動(dòng)課上,老師決定從本次調(diào)查回答“非常愿意”的同學(xué)中隨機(jī)選取2名同學(xué)來(lái)談?wù)勊麄兊南敕,而本次調(diào)查回答“非常滿意”的這些同學(xué)中只有一名男同學(xué),請(qǐng)用畫樹(shù)狀圖或列表的方法求選取到兩名同學(xué)中剛好有這位男同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下面各題
(1)計(jì)算: ﹣
(2)關(guān)于x一元二次方程3x2+2x﹣k=0沒(méi)有實(shí)數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,梯形ABCD中,AB∥CD,點(diǎn)E、F、G分別是BD、AC、DC的中點(diǎn).已知兩底差是6,兩腰和是12,則△EFG的周長(zhǎng)是
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com