如圖,已知AB是⊙O的直徑,PA是⊙O的切線,過點(diǎn)B作BCOP交⊙O于點(diǎn)C,連接AC.
(1)求證:△ABC△POA;
(2)若AB=2,PA=
2
,求BC的長.(結(jié)果保留根號)
(1)證明:∵AB是⊙O的直徑,
∴∠ACB=90°.
∵PA是⊙O的切線,
∴∠OAP=90°.
∵BCOP,
∴∠AOP=∠CBA.
則△ABC△POA.

(2)∵AB是⊙O的直徑,且AB=2,
∴OA=1.
∵在Rt△OAP中,PA=
2
,
OP=
PA2+OA2
=
3

∵由(1)可知△ABC△POA,
BC
OA
=
AB
OP

則BC=
AB•OA
OP
=
2×1
3

∴求得BC=
2
3
3
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,⊙A與y軸交于C、D兩點(diǎn),圓心A的坐標(biāo)為(1,0),⊙A的半徑為
5
,過C作⊙A的切線交x軸于點(diǎn)B.
(1)求切線BC的解析式;
(2)若點(diǎn)P是第一象限內(nèi)⊙A上的一點(diǎn),過點(diǎn)P作⊙A的切線與直線BC相交于點(diǎn)G,且∠CGP=120°,求點(diǎn)G的坐標(biāo);
(3)向左移動⊙A(圓心A始終保持在x軸上),與直線BC交于E、F,在移動過程中是否存在點(diǎn)A,使△AEF是直角三角形?若存在,求出點(diǎn)A的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,∠ABC=30°,AB=10,那么以A為圓心,6為半徑的⊙A與直線BC的位置關(guān)系是( 。
A.相交B.相切C.相離D.不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,Rt△ABC中,∠C=90°,AC=3,BC=4,以C為圓心,以
12
5
為半徑作⊙C,則⊙C與直線AB的位置關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,P點(diǎn)在AB的延長線上,弦CD⊥AB于E,∠PCE=2∠BDC.
(1)求證:PC是⊙O的切線;
(2)若AE:EB=2:1,PB=6,求弦CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

以半圓中的一條弦BC(非直徑)為對稱軸將弧BC折疊后與直徑AB交于點(diǎn)D,若
AD
DB
=
2
3
,且AB=10,則CB的長為( 。
A.4
5
B.4
3
C.4
2
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

同學(xué)們都學(xué)習(xí)過《幾何》課本第三冊第199頁的第11題,它是這樣的:
如圖,A為⊙O的直徑EF上的一點(diǎn),OB是和這條直徑垂直的半徑,BA和⊙O相交于另一點(diǎn)C,過點(diǎn)C的切線和EF的延長線相交于點(diǎn)D,求證:DA=DC.

(1)現(xiàn)將圖1中的直徑EF所在直線進(jìn)行平行移動到圖2所示的位置,此時OB與EF垂直相交于H,其它條件不變.
①求證:DA=DC;
②當(dāng)DF:EF=1:8,且DF=
2
時,求AB•AC的值.
(2)將圖2中的EF所在直線繼續(xù)向上平行移動到圖3所示的位置,使EF與OB的延長線垂直相交于H,A為EF上異于H的一點(diǎn),且AH小于⊙O的切線交EF于D,試猜想:DA=DC是否仍然成立?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AC為直徑的圓交AB于D,則AD的長為( 。
A.
9
5
B.
12
5
C.
16
5
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知△ABC是等腰三角形,∠C=90°,AC=BC=
2
,在BC上取一點(diǎn)O,以O(shè)為圓心,OC為半徑作半圓與AB相切于點(diǎn)E,則⊙O的半徑為______.

查看答案和解析>>

同步練習(xí)冊答案