【題目】平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸正半軸、y軸正半軸上,AO=BO,△ABO的面積為2.
(1)求點(diǎn)A的坐標(biāo);
(2)點(diǎn)C、D分別在x軸負(fù)半軸、y軸正半軸上(D在B點(diǎn)上方),AD=BC,連接CD交AB延長(zhǎng)線(xiàn)于E,設(shè)點(diǎn)E橫坐標(biāo)為t,△BCE的面積為S,求S與t的函數(shù)關(guān)系;
(3)在(2)的條件下,點(diǎn)F為BE中點(diǎn),連接OF交BC于G,當(dāng)∠CGO=90°時(shí),求點(diǎn)D坐標(biāo).
【答案】(1)A(2,0);(2)S=t2-2t;(3)D(0,6).
【解析】
(1) 由△ABO的面積為2.得出方程,求出AO的長(zhǎng)度,得出A的坐標(biāo);
(2)過(guò)E作EM⊥AC于M,可證,可推出AC、EM、BO的長(zhǎng)度,由,代入即可求出S與t的函數(shù)關(guān)系式.
(3)由∠CGO=90°可得BC⊥OF,然后根據(jù) 列出方程求解即可.
解:(1)∵AO=BO,△ABO的面積為2.
∴
∴AO=2
∴A(2,0)
(2)過(guò)E作EM⊥AC于M
∵∠AOB=90°,AO=BO
∴∠BAC=45°
∵∠AOD=∠BOC=90°
∴
∴OC=OD
∵∠COD=90°,OC=OD
∴∠DCO=45°
∴∠BAC=∠DCO=45°
∴CE=EA,∠CEA=90°
∵EM⊥AC
∴M是AC的中點(diǎn)
∵點(diǎn)E橫坐標(biāo)為t
∴OM=|t|=-t
∴AM=2-t
∵∠CEA=90°, M是AC的中點(diǎn)
∴CM=EM=AM=2-t
∴AC=4-2t,OC=2-2t
∵
∴
=
=
=
∴
(3)∵OC=2-2t
∴C(2t-2,0)
∵B(0,2),C(2t-2,0)
∴
∵EM =2-t
∴E(t, 2-t),
∵B(0.2), E(t, 2-t),點(diǎn)F為BE中點(diǎn)
∴F( )
∵F( ),O(0,0)
∴
∵∠CGO=90°
∴BC⊥OF
∴
∴
解得:
∵t<0
∴t=-2
∴OC=2-2t=2+4=6
∴OD=OC=6
∴D(0,6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與軸交于A、B兩點(diǎn),與軸交于點(diǎn)C,拋物線(xiàn)的對(duì)稱(chēng)軸交軸于點(diǎn)D,已知點(diǎn)A(-1,0),點(diǎn)C(0,2).
(1)求拋物線(xiàn)的函數(shù)解析式;
(2)線(xiàn)段BC上有一動(dòng)點(diǎn)P,過(guò)點(diǎn)P作軸的平行線(xiàn),交拋物線(xiàn)于點(diǎn)Q,求線(xiàn)段PQ的最大值;
(3)若點(diǎn)E在軸上,點(diǎn)F在拋物線(xiàn)上.是否存在以C、D、E、F為頂點(diǎn)且以CD為一邊的平行四邊形?若存在,請(qǐng)你求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】)如圖,Rt△ABC中,C= 90o,以斜邊AB為邊向外作正方形 ABDE,且正方形對(duì)角線(xiàn)交于點(diǎn)D,連接OC,已知AC=5,OC=6,則另一直角邊BC的長(zhǎng)為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要在平行四邊形內(nèi)作一個(gè)菱形.甲,乙兩位同學(xué)的作法分別如下:
對(duì)于甲乙兩人的作法,可判斷( )
A.甲正確,乙錯(cuò)誤B.甲錯(cuò)誤,乙正確C.甲,乙均正確D.甲、乙均錯(cuò)誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小亮將筆記本電腦水平放置在桌子上,顯示屏OA與底板OB所在水平線(xiàn)的夾角為120°時(shí),感覺(jué)最舒適(如圖1),側(cè)面示意圖為圖2;使用時(shí)為了散熱,她在底板下面墊入散熱架BCO'后,電腦轉(zhuǎn)到B O′A′位置(如圖3),側(cè)面示意圖為圖4.已知OA=OB=28cm,O′C⊥OB于點(diǎn)C,O′C=14cm.
(參考數(shù)據(jù):,,)
(1)求∠CBO'的度數(shù).
(2)顯示屏的頂部A'比原來(lái)升高了多少cm?(結(jié)果精確到0.1cm)
(3)如圖4,墊入散熱架后,要使顯示屏O′A′與水平線(xiàn)的夾角仍保持120°,則顯示屏O′A′應(yīng)繞點(diǎn)O'按順時(shí)針?lè)较蛐D(zhuǎn)多少度?(不寫(xiě)過(guò)程,只寫(xiě)結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形ABCD中,對(duì)角線(xiàn)AC、BD相交于點(diǎn)O,下列條件不能判定這個(gè)四邊形是平行四邊形的是
A.AB∥DC,AD∥BC B.AB=DC,AD=BC
C.AO=CO,BO=DO D.AB∥DC,AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A點(diǎn)作BC的平行線(xiàn),交CE的延長(zhǎng)線(xiàn)于點(diǎn)F,且AF=BD,連接BF.
(1)求證:BD=CD;(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△OAB繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到△OCD,若OA=4,∠AOB=35°,則下列結(jié)論錯(cuò)誤的是( )
A. ∠BDO=60° B. ∠BOC=25° C. OC=4 D. BD=4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知:如圖,在正方形ABCD中,點(diǎn)E為邊AB的中點(diǎn),聯(lián)結(jié)DE,點(diǎn)F在DE上CF=CD,過(guò)點(diǎn)F作FG⊥FC交AD于點(diǎn)G.
(1)求證:GF=GD;
(2)聯(lián)結(jié)AF,求證:AF⊥DE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com