(2013•錦州)如圖,某公司入口處有一斜坡AB,坡角為12°,AB的長(zhǎng)為3m,施工隊(duì)準(zhǔn)備將斜坡修成三級(jí)臺(tái)階,臺(tái)階高度均為hcm,深度均為30cm,設(shè)臺(tái)階的起點(diǎn)為C.
(1)求AC的長(zhǎng)度;
(2)求每級(jí)臺(tái)階的高度h.
(參考數(shù)據(jù):sin12°≈0.2079,cos12°≈0.9781,tan12°≈0.2126.結(jié)果都精確到0.1cm)
分析:(1)過(guò)點(diǎn)B作BE⊥AC于點(diǎn)E,在Rt△ABE中利用三角函數(shù)求出AE,由AC=AE-CE,可得出答案;
(2)在Rt△ABE中,求出BE,即可計(jì)算每級(jí)臺(tái)階的高度h.
解答:解:如右圖,過(guò)點(diǎn)B作BE⊥AC于點(diǎn)E,
(1)在Rt△ABE中,AB=3m,cos12°≈0.9781,
AE=ABcos12°≈2.934m=293.4cm,
∴AC=AE-CE=293.4-60=233.4cm.
答:AC的長(zhǎng)度約為233.4cm.

(2)h=
1
3
BE=
1
3
ABsin12°=
1
3
×300×0.2079=20.79≈20.8cm.
答:每級(jí)臺(tái)階的高度h約為20.8cm.
點(diǎn)評(píng):本題考查了解直角三角形的應(yīng)用,難度一般,解答本題的關(guān)鍵是根據(jù)坡度和坡角構(gòu)造直角三角形,并解直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•錦州)如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),OD⊥BC于點(diǎn)D,過(guò)點(diǎn)C作⊙O的切線,交OD的延長(zhǎng)線于點(diǎn)E,連接BE.
(1)求證:BE與⊙O相切;
(2)設(shè)OE交⊙O于點(diǎn)F,若DF=1,BC=2
3
,求由劣弧BC、線段CE和BE所圍成的圖形面積S.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•錦州)如圖,方格紙中的每個(gè)小正方形邊長(zhǎng)都是1個(gè)長(zhǎng)度單位,Rt△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(1,1),點(diǎn)B的坐標(biāo)為(4,1).
(1)先將Rt△ABC向左平移5個(gè)單位長(zhǎng)度,再向下平移1個(gè)單位長(zhǎng)度得到Rt△A1B1C1,試在圖中畫(huà)出Rt△A1B1C1,并寫(xiě)出點(diǎn)A1的坐標(biāo);
(2)再將Rt△A1B1C1繞點(diǎn)A1順時(shí)針旋轉(zhuǎn)90°后得到Rt△A2B2C2,試在圖中畫(huà)出Rt△A2B2C2,并計(jì)算Rt△A1B1C1在上述旋轉(zhuǎn)過(guò)程中點(diǎn)C1所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•錦州)如圖,點(diǎn)O是菱形ABCD對(duì)角線的交點(diǎn),DE∥AC,CE∥BD,連接OE.
求證:OE=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•錦州)如圖1,等腰直角三角板的一個(gè)銳角頂點(diǎn)與正方形ABCD的頂點(diǎn)A重合,將此三角板繞點(diǎn)A旋轉(zhuǎn),使三角板中該銳角的兩條邊分別交正方形的兩邊BC,DC于點(diǎn)E,F(xiàn),連接EF.
(1)猜想BE、EF、DF三條線段之間的數(shù)量關(guān)系,并證明你的猜想;
(2)在圖1中,過(guò)點(diǎn)A作AM⊥EF于點(diǎn)M,請(qǐng)直接寫(xiě)出AM和AB的數(shù)量關(guān)系;
(3)如圖2,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=
12
∠BAD,連接EF,過(guò)點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想AM與AB之間的數(shù)量關(guān)系.并證明你的猜想.

查看答案和解析>>

同步練習(xí)冊(cè)答案