【題目】某制藥廠需要緊急生產(chǎn)一批能有效緩解“新冠肺炎”的藥品,要求必須在12天(含12天)內(nèi)完成.為了加快生產(chǎn),車間采取工人加班,機器不停的生產(chǎn)方式,這樣每天藥品的產(chǎn)量(噸)是時間(天)的一次函數(shù),且滿足如下表中所對應的數(shù)量關(guān)系.由于機器負荷運轉(zhuǎn)產(chǎn)生損耗,平均生產(chǎn)每噸藥品的成本(元)與時間(天)的關(guān)系滿足如圖所示的函數(shù)圖象.
時間(天) | 2 | 4 |
每天產(chǎn)量(噸) | 24 | 28 |
(1)求藥品每天的產(chǎn)量(噸)與時間(天)之間的函數(shù)關(guān)系式;
(2)當時,直接寫出(元)與時間(天)的函數(shù)關(guān)系是 ;
(3)若這批藥品的價格為1400元/噸,每天的利潤設(shè)為元,求哪一天的利潤最高,最高利潤是多少?(利潤售價成本)
【答案】(1)y=2x+20;(2)40x+200();(3)第10天利潤最高,最高利潤是32000元.
【解析】
(1)設(shè)y=kx+b,根據(jù)表格中的數(shù)據(jù)將值代入即可求算函數(shù)關(guān)系式;
(2)根據(jù)函數(shù)圖象知,當,(元)與時間(天)之間滿足一次函數(shù)關(guān)系,設(shè),將(5,400)(12,680)代入求解函數(shù)關(guān)系式即可;
(3)根據(jù)函數(shù)圖象分為和分別表示出利潤并求出最大利潤再進行比較即可.
(1)設(shè)y=kx+b,則,解得,
∴y=2x+20
(2)根據(jù)函數(shù)圖象知,當,(元)與時間(天)之間滿足一次函數(shù)關(guān)系:設(shè),將(5,400)(12,680)代入:
解得:
∴P=40x+200()
(3)當時,平均生產(chǎn)每噸藥品的成本是P=400元,
此時利潤:
W1=(1400-400)y=1000(2x+20)=2000x+20000,
∵2000>0,
∴W1隨x增大而增大,
∴x=5時,W1最大值=2000×5+20000=30000元.
當時,平均生產(chǎn)每噸藥品的成本是P=40x+200,
此時利潤:
W2=(1400-P)y
=(1400-40x-200)(2x+20)
=-80x2+1600x+24000
=-80(x-10)2+32000,
∴x=10時,W2的最大值=32000
∵32000>30000,
∴第10天利潤最高,最高利潤是32000元.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系第一象限內(nèi),直線與直線的內(nèi)部作等腰,使,邊軸,軸,在直線上,點C在直線上,CB的延長線交直線于點,作等腰,使軸,軸,點在直線上,按此規(guī)律,則等腰的腰長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AE平分∠BAC交BC于點E,D是AB邊上一動點,連接CD交AE于點P,連接BP.已知AB =6cm,設(shè)B,D兩點間的距離為xcm,B,P兩點間的距離為y1cm,A,P兩點間的距離為y2cm.
小明根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進行了探究.
下面是小明的探究過程,請補充完整:
(1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1,與x的幾組對應值:
x/cm | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
y1/cm | 2.49 | 2.64 | 2.88 | 3.25 | 3.80 | 4.65 | 6.00 |
y2/cm | 4.59 | 4.24 | 3.80 | 3.25 | 2.51 | 0.00 |
(2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點(x,y1),(x,),并畫出函數(shù)y1,的圖象;
(3)結(jié)合函數(shù)圖象,回答下列問題:
①當AP=2BD時,AP的長度約為 cm;
②當BP平分∠ABC時,BD的長度約為 cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AB=2,AD=4,對角線AC,BD相交于點O,且E,F,G,H分別是AO,BO,CO,DO的中點,則下列說法正確的是( )
A.EH=HGB.四邊形EFGH是平行四邊形
C.AC⊥BDD.的面積是的面積的2倍
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,,垂足分別為、,,是的中點,,交于點.下列結(jié)論:①;②垂直平分;③;④;⑤.其中正確的是( )
A.①②③B.①③⑤C.①②④D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某教研機構(gòu)為了了解初中生課外閱讀名著的現(xiàn)狀,隨機抽取了某校50名初中生進行調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成了以下不完整的統(tǒng)計圖,請根據(jù)圖中信息解答下列問題:
類別 | 重視 | 一般 | 不重視 |
人數(shù) | a | 15 | b |
(1)求表格中a,b的值;
(2)請補全統(tǒng)計圖;
(3)若某校共有初中生2000名,請估計該校“重視課外閱讀名著”的初中生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】工匠制作某種金屬工具要進行材料煅燒和鍛造兩個工序,即需要將材料燒到800℃,然后停止煅燒進行鍛造操作,經(jīng)過時,材料溫度降為600℃.如圖,煅燒時溫度與時間成一次函敷關(guān)系:鍛造時,溫度與時間成反比例函數(shù)關(guān)系。已知該材料初始溫度是32℃.
(1)分別求出材料煅燒和鍛造時與的函數(shù)關(guān)系式,并且寫出自變量的取值范圍;
(2)根據(jù)工藝要求,當材料溫度低于400℃時,須停止操作.那么鍛造的操作時間最多有多長?.
(3)如果加工每個零件需要鍛造12分鐘,并且當材料溫度低于400℃時,需要重新煅燒.通過計算說明加工第一個零件,一共需要多少分鐘.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A、D的⊙O分別交邊AB、AC于點E、F.
(1)求證:BC是⊙O的切線;
(2)若BE=16,sinB=,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為推進生態(tài)文明建設(shè),甲、乙兩工程隊同時為嶗山區(qū)的兩條綠化帶鋪設(shè)草坪.兩隊所鋪設(shè)草坪的面積(米)與施工時間(時)之間關(guān)系的近似可以用此圖象描述.請結(jié)合圖象解答下列問題:
(1)從工作2小時開始,施工方從乙隊抽調(diào)兩人對草坪進行灌溉,乙隊速度有所降低,求乙隊在工作2小時后與的函數(shù)關(guān)系式;
(2)求乙隊降速后,何時鋪設(shè)草坪面積為甲隊的?
(3)乙隊降速后,甲乙兩隊鋪設(shè)草坪速度之比為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com