【題目】如圖所示的正方形網(wǎng)格中,網(wǎng)格線的交點(diǎn)稱為格點(diǎn),已知A,B是兩格點(diǎn),若C也是格點(diǎn),且使得△ABC為等腰三角形,則點(diǎn)C的個(gè)數(shù)是( )
A.6
B.7
C.8
D.9
【答案】C
【解析】解:如下圖:分情況討論.
① AB為等腰△ABC底邊時(shí),符合條件的C點(diǎn)有4個(gè);
②AB為等腰△ABC其中的一條腰時(shí),符合條件的C點(diǎn)有4個(gè).
故應(yīng)選:C 。
此題分兩種情況討論,① AB為等腰△ABC底邊時(shí),作AB的中垂線,交格點(diǎn)的位置就是C點(diǎn)的位置,從而得出符合條件的C點(diǎn)有4個(gè);②AB為等腰△ABC其中的一條腰時(shí),以B點(diǎn)為圓心,AB的長(zhǎng)度為半徑畫弧,與格點(diǎn)有兩個(gè)交點(diǎn);以A點(diǎn)為圓心,AB的長(zhǎng)度為半徑畫弧,與格點(diǎn)有兩個(gè)交點(diǎn); 符合條件的C點(diǎn)有4個(gè);從而得出答案。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】矩形ABCD中,AD=8cm,AB=6cm.動(dòng)點(diǎn)E從點(diǎn)C開始沿邊CB向點(diǎn)B以2cm/s的速度運(yùn)動(dòng),動(dòng)點(diǎn)F從點(diǎn)C同時(shí)出發(fā)沿邊CD向點(diǎn)D以1cm/s的速度運(yùn)動(dòng)至點(diǎn)D停止.如圖可得到矩形CFHE,設(shè)運(yùn)動(dòng)時(shí)間為x(單位:s),此時(shí)矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①解分式方程一定會(huì)產(chǎn)生增根;
②方程 =0的根為x=2;
③方程 = 中各分式的最簡(jiǎn)公分母為2x(2x-4);
④x+ =1+ 是分式方程.
其中正確的有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從A地將一批物品運(yùn)往B地,再返回A地,圖6表示兩車離A地的距離s(千米)隨時(shí)間t(小時(shí))變化的圖象,已知乙車到達(dá)B地后以30千米/小時(shí)的速度返回.請(qǐng)根據(jù)圖象中的數(shù)據(jù)回答:
(1)甲車出發(fā)多長(zhǎng)時(shí)間后被乙車追上?
(2)甲車與乙車在距離A地多遠(yuǎn)處迎面相遇?
(3)甲車從B地返回的速度多大時(shí),才能比乙車先回到A地?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:△DEC的一個(gè)頂點(diǎn)D在△ABC內(nèi)部,且∠CAD+∠CBD=90°.
(1)如圖1,若△ABC與△DEC均為等腰直角三角形,且∠ABC=∠DEC=90°,連接BE,求證:△ADC∽△BEC.
(2)如圖2,若∠ABC=∠DEC=90°,=n,BD=1,AD=2,CD=3,求n的值;
(3)如圖3,若AB=BC,DE=EC,且∠ABC=∠DEC=135°,BD=a,AD=b,CD=c,請(qǐng)直接寫出a、b、c三者滿足的等量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com