精英家教網 > 初中數學 > 題目詳情

【題目】綜合探究

已知拋物線yax2+x+4的對稱軸是直線x3,與x軸相交于A,B兩點(點B在點A右側),與y軸交于點C

1)求拋物線的解析式和A,B兩點的坐標;

2)如圖1,若點P是拋物線上B、C兩點之間的一個動點(不與BC重合),是否存在點P,使四邊形PBOC的面積最大?若存在,求點P的坐標及四邊形PBOC面積的最大值;若不存在,請說明理由;

3)如圖2,若點M是拋物線上任意一點,過點My軸的平行線,交直線BC于點N,當MN3時,直接寫出點M的坐標.

【答案】1)拋物線的解析式為:y=﹣x2+x+4;點A的坐標為(﹣2,0),點B的坐標為(80)(2)存在點P(4,6),使得四邊形PBOC的面積最大;點P的坐標為(4,6),四邊形PBOC面積的最大值為323)點M的坐標為(2,6)、(64)、(42,1)或(4+2,﹣1)

【解析】

1)根據拋物線的對稱軸方程,即可得到a的值,從而得到函數解析式,進而求出AB的值;

2)根據待定系數法,求出直線BC的解析式,設點P的坐標為(x,﹣x2+x+4),過點PPDy軸,交直線BC于點D,則點D的坐標為(x,﹣x+4),進而求出PD的值,根據S四邊形PBOCSBOC+SPBC,得到二次函數解析式,即可得到答案;

3)設點M的坐標為(m,﹣m2+m+4),則點N的坐標為(m,﹣m+4),則MN=|m2+2m |,根據MN=3,列出關于m的方程,即可求解.

1)∵ 拋物線的對稱軸是:直線x3,

3,解得:a=﹣,

∴拋物線的解析式為:y=﹣x2+x+4

y0時,﹣x2+x+40,解得x1=﹣2,x28,

∴點A的坐標為(﹣2,0),點B的坐標為(80);

2)當x0時,y=﹣x2+x+44,

∴點C的坐標為(0,4).

設直線BC的解析式為:ykx+bk≠0),

B(8,0),C(0,4)代入ykx+b得:,解得:,

直線BC的解析式為:y=﹣x+4

假設存在點P,使四邊形PBOC的面積最大,

設點P的坐標為(x,﹣x2+x+4),如圖1,

過點PPDy軸,交直線BC于點D,則點D的坐標為(x,﹣x+4),

PD=﹣x2+x+4﹣(﹣x+4)=﹣x2+2x

S四邊形PBOCSBOC+SPBC×8×4+PDOB

16+×8(﹣x2+2x)=﹣x2+8x+16

=﹣(x42+32

x4時,四邊形PBOC的面積最大,最大值是32.

0x8,

存在點P(4,6),使得四邊形PBOC的面積最大,四邊形PBOC面積的最大值為32

3)設點M的坐標為(m,﹣m2+m+4),則點N的坐標為(m,﹣m+4),如圖2,

MN|m2+m+4﹣(﹣m+4)||m2+2m |

又∵ MN3,

|m2+2m |3,

0m8時,﹣m2+2m30,解得:m12,m26

M的坐標為(2,6)或(64);

m0m8時,﹣m2+2m +30,解得:m342m44+2,

M的坐標為(42,1)或(4+2,﹣1).

答:點M的坐標為(2,6)、(6,4)、(42,1)或(4+2,﹣1).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知是一張直角三角形紙片,其中,小亮將它繞點逆時針旋轉后得到,交直線于點.

1)如圖1,當時,所在直線與線段有怎樣的位置關系?請說明理由.

2)如圖2,當,求為等腰三角形時的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙的外接圓,,過點的切線與的延長線交于點,于點,.

1)判斷的位置關系,并說明理由;

2)若,求的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,有一個,頂點的坐標分別是.繞原點順時針旋轉90°得到,請在平面直角坐標系中作出,并寫出的頂點坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】中,

1)如圖①,點在斜邊上,以點為圓心,長為半徑的圓交于點,交于點,與邊相切于點.求證:

2)在圖②中作,使它滿足以下條件:

①圓心在邊上;②經過點;③與邊相切.

(尺規(guī)作圖,只保留作圖痕跡,不要求寫出作法)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線的解析表達式為,且軸交于點,直線經過點,直線,交于點

1求點的坐標;

2求直線的解析表達式;

3的面積。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,小宋作出了邊長為2的第一個正方形A1B1C1D1,算出了它的面積.然后分別取正方形A1B1C1D1四邊的中點A2、B2、C2、D2作出了第二個正方形A2B2C2D2,算出了它的面積.用同樣的方法,作出了第三個正方形A3B3C3D3,算出了它的面積,由此可得,第六個正方形A6B6C6D6的面積是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某中學選拔一名青年志愿者:經筆試、面試,結果小明和小麗并列第一.評委會決定通過抓球來確定人選.規(guī)則如下:在不透明的布袋里裝有除顏色之外均相同的2個紅球和1個綠球,小明先取出一個球,記住顏色后放回,然后小麗再取出一個球.若兩次取出的球都是紅球,則小明勝出;若兩次取出的球是一紅一綠,則小麗勝出.你認為這個規(guī)則對雙方公平嗎?請用列表法或畫樹狀圖的方法進行分析.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,DE∥BC,EF∥AB.

(1)求證:△ADE∽△EFC;

(2)如果AB=6,AD=4,求的值.

查看答案和解析>>

同步練習冊答案