【題目】某中學選拔一名青年志愿者:經(jīng)筆試、面試,結果小明和小麗并列第一.評委會決定通過抓球來確定人選.規(guī)則如下:在不透明的布袋里裝有除顏色之外均相同的2個紅球和1個綠球,小明先取出一個球,記住顏色后放回,然后小麗再取出一個球.若兩次取出的球都是紅球,則小明勝出;若兩次取出的球是一紅一綠,則小麗勝出.你認為這個規(guī)則對雙方公平嗎?請用列表法或畫樹狀圖的方法進行分析.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,點H為DC上一點,BD、AH交于點O,△ABO為等邊三角形,點E在線段AO上,OD=OE,連接BE,點F為BE的中點,連接AF并延長交BC于點G,且∠GAD=60°.
(1)若CH=2,AB=4,求BC的長;
(2)求證:BD=AB+AE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜生產(chǎn)基地的氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種新品種蔬菜.如圖是試驗階段的某天恒溫系統(tǒng)從開啟到關閉后,大棚內(nèi)的溫度y (℃)與時間x(h)之間的函數(shù)關系,其中線段AB、BC表示恒溫系統(tǒng)開啟階段,雙曲線的一部分CD表示恒溫系統(tǒng)關閉階段.
請根據(jù)圖中信息解答下列問題:
(1)求這天的溫度y與時間x(0≤x≤24)的函數(shù)關系式;
(2)求恒溫系統(tǒng)設定的恒定溫度;
(3)若大棚內(nèi)的溫度低于10℃時,蔬菜會受到傷害.問這天內(nèi),恒溫系統(tǒng)最多可以關閉多少小時,才能使蔬菜避免受到傷害?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線是足球場的底線,是球門,點是射門點,連接,叫做射門角.
(1)如圖,點是射門點,另一射門點在過三點的圓外(未超過底線).證明:
(2)如圖,經(jīng)過球門端點,直線,垂足為且與相切與點,于點,連接,若,求此時一球員帶球沿直線向底線方向運球時最大射門角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+1與兩坐標軸分別交于A,B兩點,將線段OA分成n等份,分點分別為P1,P2,P3,…,Pn﹣1,過每個分點作x軸的垂線分別交直線AB于點T1,T2,T3,…,Tn﹣1,用S1,S2,S3,…,Sn﹣1分別表示Rt△T1OP1,Rt△T2P1P2,…,Rt△Tn﹣1Pn﹣2Pn﹣1的面積,則S1+S2+S3+…+Sn﹣1=__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題提出:如果一個多邊形的各個頂點均在另一個多邊形的邊上,則稱這個多邊形為另一多邊形的內(nèi)接多邊形
問題探究:
(1)如圖1,正方形PEFG的頂點E、F在等邊三角形ABC的邊AB上,頂點P在AC邊上.請在等邊三角形ABC內(nèi)部,以A為位似中心,作出正方形PEFG的位似正方形P'E'F'G',且使正方形P'E'F'G'的面積最大(不寫作法)
(2)如圖2,在邊長為4正方形ABCD中,畫出一個面積最大的內(nèi)接正三角形,并求此最大內(nèi)接正三角形的面積
拓展應用:
(3)如圖3,在邊長為4的正方形ABCD中,能不能截下一個面積最大的直角三角形,并使其三邊比為3:4:5,若能,請求出此直角三角形的最大面積,若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】音樂噴泉(圖1)可以使噴水造型隨音樂的節(jié)奏起伏變化而變化.某種音樂噴泉形狀如拋物線,設其出水口為原點,出水口離岸邊18m,音樂變化時,拋物線的頂點在直線y=kx上變動,從而產(chǎn)生一組不同的拋物線(圖2),這組拋物線的統(tǒng)一形式為y=ax2+bx.
(1)若已知k=1,且噴出的拋物線水線最大高度達3m,求此時a、b的值;
(2)若k=1,噴出的水恰好達到岸邊,則此時噴出的拋物線水線最大高度是多少米?
(3)若k=3,a=﹣,則噴出的拋物線水線能否達到岸邊?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com