【題目】如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是(
A.12
B.24
C.12
D.16

【答案】D
【解析】解:在矩形ABCD中, ∵AD∥BC,
∴∠DEF=∠EFB=60°,
∵把矩形ABCD沿EF翻折點(diǎn)B恰好落在AD邊的B′處,
∴∠DEF=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,
AB=A′B′,
在△EFB′中,
∵∠DEF=∠EFB=∠EB′F=60°
∴△EFB′是等邊三角形,
Rt△A′EB′中,
∵∠A′B′E=90°﹣60°=30°,
∴B′E=2A′E,而A′E=2,
∴B′E=4,
∴A′B′=2 ,即AB=2
∵AE=2,DE=6,
∴AD=AE+DE=2+6=8,
∴矩形ABCD的面積=ABAD=2 ×8=16
故選D.
解:在矩形ABCD中根據(jù)AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD沿EF翻折點(diǎn)B恰好落在AD邊的B′處,
所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,
在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EFB′是等邊三角形,由此可得出∠A′B′E=90°﹣60°=30°,根據(jù)直角三角形的性質(zhì)得出A′B′=AB=2 ,然后根據(jù)矩形的面積公式列式計(jì)算即可得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】楊陽同學(xué)沿一段筆直的人行道行走,在由A步行到達(dá)B處的過程中,通過隔離帶的空隙O,剛好瀏覽完對面人行道宣傳墻上的社會主義核心價值觀標(biāo)語,其具體信息匯集如下:

如圖,AB∥OH∥CD,相鄰兩平行線間的距離相等,AC,BD相交于O,OD⊥CD.垂足為D,已知AB=20米,請根據(jù)上述信息求標(biāo)語CD的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2018年春節(jié)期間,云南接待游客約2882萬人,旅游收入約193億元,其中2882萬用科學(xué)記數(shù)法表示為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項(xiàng)式mx+n可分解為m(x﹣y),則n表示的整式為(
A.m
B.my
C.﹣y
D.﹣my

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD是△ABC的角平分線,∠B=45°,∠ADC=75°,求∠BAC、∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形ABC中,一腰AB的垂直平分線交另一腰AC于G,已知AB=10,△GBC的周長為17,則底BC為(
A.5
B.7
C.10
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AC=3,AB=5,D為AB邊上一點(diǎn),DE∥AC,交BC于點(diǎn)E,DF∥BC,交AC于點(diǎn)F,連接EF,則線段EF的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年清明小長假期問,長春凈月某景區(qū)接待游客約為51700人次,數(shù)字51700用科學(xué)記數(shù)法表示為( 。

A.51.7×103B.5.17×104C.5.17×105D.0.517×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長AP交CD于F點(diǎn),

(1)求證:四邊形AECF為平行四邊形;

(2)若AEP是等邊三角形,連結(jié)BP,求證:APB≌△EPC;

(3)若矩形ABCD的邊AB=6,BC=4,求CPF的面積.

查看答案和解析>>

同步練習(xí)冊答案