【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長AP交CD于F點(diǎn),
(1)求證:四邊形AECF為平行四邊形;
(2)若△AEP是等邊三角形,連結(jié)BP,求證:△APB≌△EPC;
(3)若矩形ABCD的邊AB=6,BC=4,求△CPF的面積.
【答案】(1)證明見試題解析;(2)證明見試題解析;(3).
【解析】
試題分析:(1)由折疊的性質(zhì)得到BE=PE,EC⊥PB,根據(jù)E為AB中點(diǎn),得到AE=PE,利用等角對(duì)等邊得到兩對(duì)角相等,利用外角性質(zhì)得到∠AEP=2∠EPB,設(shè)∠EPB=x,則∠AEP=2x,表示出∠APE,由∠APE+∠EPB得到∠APB為90°,進(jìn)而得到AF與EC平行,再由AE與FC平行,利用兩對(duì)邊平行的四邊形為平行四邊形即可得證;
(2)根據(jù)等邊三角形性質(zhì),得到△AEP三條邊相等,三內(nèi)角相等,再由折疊的性質(zhì)及鄰補(bǔ)角定義得到一對(duì)角相等,根據(jù)同角的余角相等得到一對(duì)角相等,再由AP=EB,利用AAS即可得證;
(3)過P作PM⊥CD,在Rt△EBC中,利用勾股定理求出EC,利用面積求出BQ,再根據(jù)BP=2BQ求出BP,在Rt△ABP中,利用勾股定理求出AP,根據(jù)AF-AP求出PF,由PM與AD平行,得到△PMF與△ADF相似,由相似得比例求出PM,再由FC=AE=3,求出△CPF面積即可.
試題解析:(1)由折疊得到BE=PE,EC⊥PB,∵E為AB的中點(diǎn),∴AE=EB,即AE=PE,∴∠EBP=∠EPB,∠EAP=∠EPA,∵∠AEP為△EBP的外角,∴∠AEP=2∠EPB,設(shè)∠EPB=x,則∠AEP=2x,∠APE==90°﹣x,∴∠APB=∠APE+∠EPB=x+90°﹣x=90°,即BP⊥AF,∴AF∥EC,∵AE∥FC,∴四邊形AECF為平行四邊形;
(2)∵△AEP為等邊三角形,∴∠BAP=∠AEP=60°,AP=AE=EP=EB,∵∠PEC=∠BEC,∴∠PEC=∠BEC=60°,∵∠BAP+∠ABP=90°,∠ABP+∠BEQ=90°,∴∠BAP=∠BEQ,在△ABP和△EBC中,∵∠APB=∠EBC=90°,∠BAP=∠BEQ,AP=EB,∴△ABP≌△EBC(AAS),∵△EBC≌△EPC,∴△ABP≌△EPC;
(3)過P作PM⊥DC,交DC于點(diǎn)M,在Rt△EBC中,EB=3,BC=4,根據(jù)勾股定理得:EC==5,∵S△EBC=EBBC=ECBQ,∴BQ==,由折疊得:BP=2BQ=,在Rt△ABP中,AB=6,BP=,根據(jù)勾股定理得:AP==,∵四邊形AECF為平行四邊形,∴AF=EC=5,F(xiàn)C=AE=3,∴PF==,∵PM∥AD,∴,即,解得:PM=,則S△PFC=FCPM==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( )
A.12
B.24
C.12
D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,把△ABC向上平移3個(gè)單位長度,再向右平移2個(gè)單位長度,得到△A′B′C′.
(1)在圖中畫出△A′B′C′;
(2)寫出A′,B′的坐標(biāo);
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,二次函數(shù)的圖像過點(diǎn) A (3,0),B (0,4)兩點(diǎn),動(dòng)點(diǎn) P 從 A 出發(fā),在線段 AB 上沿 A → B 的方向以每秒 2 個(gè)單位長度的速度運(yùn)動(dòng),過點(diǎn)P作 PD⊥y 于點(diǎn) D ,交拋物線于點(diǎn) C .設(shè)運(yùn)動(dòng)時(shí)間為 t (秒).
(1)求二次函數(shù)的表達(dá)式;
(2)連接 BC ,當(dāng)t=時(shí),求△BCP的面積;
(3)如圖 2,動(dòng)點(diǎn) P 從 A 出發(fā)時(shí),動(dòng)點(diǎn) Q 同時(shí)從 O 出發(fā),在線段 OA 上沿 O→A 的方向以 1個(gè)單位長度的速度運(yùn)動(dòng),當(dāng)點(diǎn) P 與 B 重合時(shí),P 、 Q 兩點(diǎn)同時(shí)停止運(yùn)動(dòng),連接 DQ 、 PQ ,將△DPQ沿直線 PC 折疊到 △DPE .在運(yùn)動(dòng)過程中,設(shè) △DPE 和 △OAB重合部分的面積為 S ,直接寫出 S 與 t 的函數(shù)關(guān)系式及 t 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點(diǎn)A(﹣2,n)在x軸上,則點(diǎn)B(n﹣1,n+1)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】底面半徑為10cm,高為40cm的圓柱形水桶中裝滿了水。小明先將桶中的水倒?jié)M3個(gè)底面半徑為3cm,高為5cm的圓柱形杯子,如果剩下的水倒在長、寬、高分別為50cm,20cm和12cm的長方體容器內(nèi),會(huì)滿出來嗎?若沒有滿出來,求出長方體容器內(nèi)水的高度( 取3)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計(jì)算正確的是( )
A.a4+a5=a9B.(2a2b3)2=4a4b6
C.﹣2a(a+3)=﹣2a2+6aD.(a+2b)2=4a2﹣b2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,老師提出如下問題:
如圖1,需要在A,B兩地和公路l之間修地下管道,請(qǐng)你設(shè)計(jì)一種最節(jié)省材料的修建方案.
小軍同學(xué)的作法如下:
①連接AB;
②過點(diǎn)A作AC⊥直線l于點(diǎn)C;
則折線段B﹣A﹣C為所求.
老師說:小軍同學(xué)的方案是正確的.
請(qǐng)回答:該方案最節(jié)省材料的依據(jù)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com