【題目】原題呈現(xiàn):若 a b 4a 2b 5 0 ,求 a、b 的值.方法介紹:
①看到 a 4a 可想到如果添上常數(shù) 4 恰好就是 a 4a 4 (a 2),這個(gè)過程叫做“配方”,同理 b 2b 1 (b 1) ,恰好把常數(shù)5分配完;
②從而原式可以化為(a 2) (b 1) 0 由平方的非負(fù)性可得 a 2 0 且 b 1 0.經(jīng)驗(yàn)運(yùn)用:
(1)若 4a b 20a 6b 34 0 求 a b 的值;
(2)若 a 5b c 2ab 4b 6c 10 0 求 a b c 的值.
【答案】(1)-;(2)-2.
【解析】
(1)把4a2+b2-20a+6b+34=0進(jìn)行配方,得到兩個(gè)多項(xiàng)式平方和等于0,根據(jù)平方具有非負(fù)性可求出a,b的值,代入式子即可.
(2)把a2+5b2+c2-2ab-4b+6c+10=0進(jìn)行配方,得到三個(gè)多項(xiàng)式平方和等于0, 根據(jù)平方具有非負(fù)性可求出a,b,c的值,代入式子即可
解: (1) 4a2+b2-20a+6b+34=(2a-5)2+(b+3)2=0
由平方具有非負(fù)性可得 2a-5=0,b+3=0
∴a=,b=-3
∴a+b=-
故答案為-.
(2) a2+5b2+c2-2ab-4b+6c+10=(a-b)2+(2b-1)2+(c+3)2=0
由平方具有非負(fù)性可得 a-b=0,2b-1=0,c+3=0
∴a=b= c=-3
∴a+b+c=-2.
故答案為-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲,乙兩人同時(shí)各接受了600個(gè)零件的加工任務(wù),甲比乙每分鐘加工的數(shù)量多,兩人同時(shí)開始加工,加工過程中其中一人因故障停止加工幾分鐘后又繼續(xù)按原速加工,直到他們完成任務(wù),如圖表示甲比乙多加工的零件數(shù)量(個(gè))與加工時(shí)間(分)之間的函數(shù)關(guān)系,觀察圖象解決下列問題:
(1)點(diǎn)B的坐標(biāo)是________,B點(diǎn)表示的實(shí)際意義是___________ _____;
(2)求線段BC對(duì)應(yīng)的函數(shù)關(guān)系式和D點(diǎn)坐標(biāo);
(3)乙在加工的過程中,多少分鐘時(shí)比甲少加工100個(gè)零件?
(4)為了使乙能與甲同時(shí)完成任務(wù),現(xiàn)讓丙幫乙加工,直到完成.丙每分鐘能加工3個(gè)零件,并把丙加工的零件數(shù)記在乙的名下,問丙應(yīng)在第多少分鐘時(shí)開始幫助乙?并在圖中用虛線畫出丙幫助后y與x之間的函數(shù)關(guān)系的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某批彩色彈力球的質(zhì)量檢驗(yàn)結(jié)果如下表:
抽取的彩色彈力球數(shù)n | 500 | 1000 | 1500 | 2000 | 2500 |
優(yōu)等品頻數(shù)m | 471 | 946 | 1426 | 1898 | 2370 |
優(yōu)等品頻率 | 0.942 | 0.946 | 0.951 | 0.949 | 0.948 |
(1)請(qǐng)?jiān)趫D中完成這批彩色彈力球“優(yōu)等品”頻率的折線統(tǒng)計(jì)圖
(2)這批彩色彈力球“優(yōu)等品”概率的估計(jì)值大約是多少?(精確到0.01)
(3)從這批彩色彈力球中選擇5個(gè)黃球、13個(gè)黑球、22個(gè)紅球,它們除了顏色外都相同,將它們放入一個(gè)不透明的袋子中,求從袋子中摸出一個(gè)球是黃球的概率.
(4)現(xiàn)從第(3)問所說的袋子中取出若干個(gè)黑球,并放入相同數(shù)量的黃球,攪拌均勻,使從袋子中摸出一個(gè)黃球的概率為,求取出了多少個(gè)黑球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l經(jīng)過⊙O的圓心O,且與⊙O交于A、B兩點(diǎn),點(diǎn)C在⊙O上,且∠AOC=30°,點(diǎn)P是直線l上的一個(gè)動(dòng)點(diǎn)(與圓心O不重合),直線CP與⊙O相交于另一點(diǎn)Q,如果QP=QO,則∠OCP= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長為1個(gè)單位長度的正方形).
(1)將△ABC沿x軸方向向左平移6個(gè)單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點(diǎn)B2、C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在東西向的綠道上設(shè)有一個(gè)崗?fù)ぃ鸭褟膷復(fù)こ霭l(fā)以的速度沿綠道巡邏.規(guī)定向東巡邏為正,向西巡邏為負(fù),巡邏情況記錄(單位:)如下:
(1)第六次巡邏結(jié)束時(shí),佳佳在崗?fù)さ哪囊贿叄?/span>
(2)在第幾次巡邏結(jié)束時(shí),佳佳離崗?fù)ぷ钸h(yuǎn)?
(3)佳佳一共巡邏多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們用a表示不大于 a 的最大整數(shù),用 a 表示大于 a 的最小整數(shù).例如:2.5 2 ,3 3 , 2.5 3 ;<2.5> 3 ,<4> 5 ,< 1.5> 1 .解決下列問題:
(1) 4.5 ,< 3.5> .
(2)若x 2 ,則 < x> 的取值范圍是 ;若< y > 1,則 y 的取值范圍是 .
(3)已知 x, y 滿足方程組;求 x, y 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
一般地,在數(shù)軸上點(diǎn),表示的實(shí)數(shù)分別為,(),則,兩點(diǎn)的距離.如圖,在數(shù)軸上點(diǎn),表示的實(shí)數(shù)分別為-3,4,則記,,因?yàn)?/span>,顯然,兩點(diǎn)的距離.
若點(diǎn)為線段的中點(diǎn),則,所以,即.
解決問題:
(1)直接寫出線段的中點(diǎn)表示的實(shí)數(shù) ;
(2)在點(diǎn)右側(cè)的數(shù)軸上有點(diǎn),且,求點(diǎn)表示的實(shí)數(shù);
(3)在(2)的條件下,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),若,兩點(diǎn)同時(shí)沿?cái)?shù)軸向正方向運(yùn)動(dòng),點(diǎn)的速度是點(diǎn)速度的2倍,的中點(diǎn)和的中點(diǎn)也隨之運(yùn)動(dòng),3秒后,,則點(diǎn)的速度為每秒 個(gè)單位長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AD=8cm,BC=10cm,AB=6cm,點(diǎn)Q從點(diǎn)A出發(fā)以1 cm/s的速度向點(diǎn)D運(yùn)動(dòng),點(diǎn)P從點(diǎn)B出發(fā)以2 cm/s的速度向點(diǎn)C運(yùn)動(dòng),P,Q兩點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)C時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng).若設(shè)運(yùn)動(dòng)時(shí)間為t(s)
(1)直接寫出:QD=______cm,PC=_______cm;(用含t的式子表示)
(2)當(dāng)t為何值時(shí),四邊形PQDC為平行四邊形?
(3)若點(diǎn)P與點(diǎn)C不重合,且DQ≠DP,當(dāng)t為何值時(shí),△DPQ是等腰三角形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com