【題目】如圖,已知在正方形ABCD中,連結(jié)AC,在AC上截取AE=AD,作△ADE的外接圓交AB于點(diǎn)F,連結(jié)DF交AC于點(diǎn)M,連結(jié)EF,下列選項(xiàng)不正確的是( 。
A.
B.AM=EC
C.∠EFB=∠AFD
D.S四邊形BCMF=S四邊形ADEF
【答案】D
【解析】
連接FG,根據(jù)正方形的性質(zhì)得到∠DAF=∠ADC=90°,由圓周角定理得到∠DGF=90°,推出四邊形AFGD是矩形,得到DG=AF,求得=,故A正確;根據(jù)等腰三角形的性質(zhì)得到∠ADE=∠AED,等量代換得到∠EFB=∠AFD,故C正確;推出△DEF是等腰直角三角形,得到DE=EF,根據(jù)全等三角形的性質(zhì)得到∠AEF=∠ADF=∠CDE,再證明△ADM≌△CDE即可得到,故B正確;連接BE,求得S四邊形ADEF=S△ADE+S△AEF=S△ADE+S△CDE=S△ACD=S△ABC,由于S四邊形BCMF<S△ABC,得到S四邊形BCMF<S四邊形ADEF,故D錯(cuò)誤.
解:連接FG,
∵四邊形ABCD是正方形,
∴∠DAF=∠ADC=90°,
∴DF是圓的直徑,
∴∠DGF=90°,
∴四邊形AFGD是矩形,
∴DG=AF,
∴=,故A正確;
∵AD=AE,
∴∠ADE=∠AED,
∵∠AFD=∠AED,∠BFE=∠ADE,
∴∠EFB=∠AFD,故C正確;
∵DF是圓的直徑,
∴∠DEF=90°,
∵∠DFE=∠DAC=45°,
∴△DEF是等腰直角三角形,
∴DE=EF,
∵∠CDE+∠ADE=∠AEF+∠AED=90°,
∴∠CDE=∠EAF,
∴△CDE≌△AEF(SAS),
∴∠AEF=∠ADF=∠CDE,
又∵AD=CD,∠DAM=∠ECD=45°,
∴△ADM≌△CDE,
∴AM=CE,故B正確;
連接BE,
∵AE=BC=AD,CE=AF,∠CAF=∠BCE=45°,
∴△AEF≌△CBE(SAS),
∴S四邊形ADEF=S△ADE+S△AEF=S△ADE+S△CDE=S△ACD=S△ABC,
∵S四邊形BCMF<S△ABC,
∴S四邊形BCMF<S四邊形ADEF,故D錯(cuò)誤,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)參加“創(chuàng)文明城市”書畫比賽時(shí),老師從全校個(gè)班中隨機(jī)抽取了個(gè)班(用表示),對(duì)抽取的作品的數(shù)量進(jìn)行了分析統(tǒng)計(jì),制作了兩幅不完整的統(tǒng)計(jì)圖.回答下列問題:
(1)老師采用的調(diào)查方式是 .(填“普查”或“抽樣調(diào)查”);
(2)請(qǐng)補(bǔ)充完整條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中班作品數(shù)量所對(duì)應(yīng)的圓心角度數(shù) 度.
(3)請(qǐng)估計(jì)全校共征集作品的件數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點(diǎn)B,C,正方形AOCD的頂點(diǎn)D在第二象限內(nèi),E是BC中點(diǎn),OF⊥DE于點(diǎn)F,連結(jié)OE,動(dòng)點(diǎn)P在AO上從點(diǎn)A向終點(diǎn)O勻速運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q在直線BC上從某點(diǎn)Q1向終點(diǎn)Q2勻速運(yùn)動(dòng),它們同時(shí)到達(dá)終點(diǎn).
(1)求點(diǎn)B的坐標(biāo)和OE的長(zhǎng);
(2)設(shè)點(diǎn)Q2為(m,n),當(dāng)tan∠EOF時(shí),求點(diǎn)Q2的坐標(biāo);
(3)根據(jù)(2)的條件,當(dāng)點(diǎn)P運(yùn)動(dòng)到AO中點(diǎn)時(shí),點(diǎn)Q恰好與點(diǎn)C重合.
①延長(zhǎng)AD交直線BC于點(diǎn)Q3,當(dāng)點(diǎn)Q在線段Q2Q3上時(shí),設(shè)Q3Q=s,AP=t,求s關(guān)于t的函數(shù)表達(dá)式.
②當(dāng)PQ與△OEF的一邊平行時(shí),求所有滿足條件的AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B的長(zhǎng)為( 。
A. B. C. D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某配餐公司有A,B兩種營(yíng)養(yǎng)快餐。一天,公司售出兩種快餐共640份,獲利2160元。兩種快餐的成本價(jià)、銷售價(jià)如下表。
A種快餐 | B種快餐 | |
成本價(jià) | 5元/份 | 6元/份 |
銷售價(jià) | 8元/份 | 10元/份 |
(1)求該公司這一天銷售A、B兩種快餐各多少份?
(2)為擴(kuò)大銷售,公司決定第二天對(duì)一定數(shù)量的A、B兩種快餐同時(shí)舉行降價(jià)促銷活動(dòng)。降價(jià)的A、B兩種快餐的數(shù)量均為第一天銷售A、B兩種快餐數(shù)量的2倍,且A種快餐按原銷售價(jià)的九五折出售,若公司要求這些快餐當(dāng)天全部售出后,所獲的利潤(rùn)不少于3280元,那么B種快餐最低可以按原銷售價(jià)打幾折出售?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知等邊△ABC內(nèi)接于⊙O.點(diǎn)P為上的一個(gè)動(dòng)點(diǎn),連結(jié)PA、PB、PC.
①如圖1,當(dāng)線段PC經(jīng)過點(diǎn)O時(shí),試寫出線段PA,PB,PC之間滿足的等量關(guān)系,并說明理由;
②如圖2,點(diǎn)P為上的任意一點(diǎn)(點(diǎn)P不與點(diǎn)A、點(diǎn)B重合),試探究線段PA,PB,PC之間滿足的等量關(guān)系,并證明你的結(jié)論;
(2)如圖3,在△ABC中,AB=4,AC=7,∠BAC的外角平分線交△ABC的外接圓于點(diǎn)P,PE⊥AC于E,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠XOY=60°,點(diǎn)A在邊OX上,OA=2.過點(diǎn)A作AC⊥OY于點(diǎn)C,以AC為一邊在∠XOY內(nèi)作等邊三角形ABC,點(diǎn)P是△ABC圍成的區(qū)域(包括各邊)內(nèi)的一點(diǎn),過點(diǎn)P作PD∥OY交OX于點(diǎn)D,作PE∥OX交OY于點(diǎn)E.設(shè)OD=a,OE=b,則a+2b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校3男2女共5名學(xué)生參加黃石市教育局舉辦的“我愛黃石”演講比賽.
(1)若從5名學(xué)生中任意抽取3名,共有多少種不同的抽法,列出所有可能情形;
(2)若抽取的3名學(xué)生中,某男生抽中,且必有1女生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在矩形ABCD中,AB=,AD=3,點(diǎn)P是AD邊上的一個(gè)動(dòng)點(diǎn),連接BP,作點(diǎn)A關(guān)于直線BP的對(duì)稱點(diǎn)A1,連接A1C,設(shè)A1C的中點(diǎn)為Q,當(dāng)點(diǎn)P從點(diǎn)A出發(fā),沿邊AD運(yùn)動(dòng)到點(diǎn)D時(shí)停止運(yùn)動(dòng),點(diǎn)Q的運(yùn)動(dòng)路徑長(zhǎng)為( )
A.πB.πC.πD.π
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com