【題目】已知點(diǎn)P(2-a,3a+6)到兩坐標(biāo)軸的距離相等,則點(diǎn)P的坐標(biāo)為(  )

A. (3,3) B. (6,-6) C. (3,3)或(6,-6) D. (3,-3)

【答案】C

【解析】

根據(jù)點(diǎn)P(2-a,3a+6)到兩坐標(biāo)軸的距離相等,可得|2-a|=|3a+6|,去絕對(duì)值得到兩個(gè)一次方程,解方程求出a的值,再寫出P點(diǎn)坐標(biāo)即可

∵P的坐標(biāo)(2-a,3a+6)到兩坐標(biāo)軸的距離相等

∴|2-a|=|3a+6|,

2-a=±(3a+6),

解得a=-4,a=-1,

∴P(6,-6)(3,3).

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知今年小明的年齡是歲,小紅的年齡比小明的2倍少4歲,小華的年齡比小紅的還大1歲,小剛的年齡恰好為小明、小紅、小華三個(gè)人年齡的和.試用含的式子表示小剛的年齡,并計(jì)算當(dāng)時(shí)小剛的年齡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,M,N分別是邊AD,BC的中點(diǎn),E,F(xiàn)分別是線段BM,CM的中點(diǎn).
(1)求證:△ABM≌△DCM;
(2)判斷四邊形MENF是什么特殊四邊形,并證明你的結(jié)論;
(3)當(dāng)AD:AB=時(shí),四邊形MENF是正方形(只寫結(jié)論,不需證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)M(3,1)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為(  )

A. (-3,1) B. (3,-1) C. (1,-3) D. (-3,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由于持續(xù)高溫和連日無雨,某水庫的蓄水量隨時(shí)間的增加而減少,已知原有蓄水量y1(萬m3)與干旱持續(xù)時(shí)間x(天)的關(guān)系如圖中線段l1所示,針對(duì)這種干旱情況,從第20.天開始向水庫注水,注水量y2(萬m3)與時(shí)間x(天)的關(guān)系如圖中線段l2所示(不考慮其它因素).

(1)求原有蓄水量y1(萬m3)與時(shí)間x(天)的函數(shù)關(guān)系式,并求當(dāng)x=20時(shí)的水庫總蓄水量.

(2)求當(dāng)0≤x≤60時(shí),水庫的總蓄水量y(萬m3)與時(shí)間x(天)的函數(shù)關(guān)系式(注明x的范圍),若總蓄水量不多于900萬m3為嚴(yán)重干旱,直接寫出發(fā)生嚴(yán)重干旱時(shí)x的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為豐富學(xué)生課外活動(dòng),某校積極開展社團(tuán)活動(dòng),學(xué)生可根據(jù)自己的愛好選擇一項(xiàng),已知該校開設(shè)的體育社團(tuán)有:A:籃球,B:排球C:足球;D:羽毛球,E:乒乓球.李老師對(duì)某年級(jí)同學(xué)選擇體育社團(tuán)情況進(jìn)行調(diào)查統(tǒng)計(jì),制成了兩幅不完整的統(tǒng)計(jì)圖(如圖),則以下結(jié)論不正確的是(

A.選科目E的有5

B.選科目D的扇形圓心角是72°

C.選科目A的人數(shù)占體育社團(tuán)人數(shù)的一半

D.選科目B的扇形圓心角比選科目D的扇形圓心角的度數(shù)少21.6°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示的方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(32),,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過2017次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)為( )

A. 2017,1 B. 20170 C. 2017,2 D. 20160

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明一個(gè)三角形不可能有兩個(gè)直角時(shí),第一步應(yīng)假設(shè):_______________________;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面內(nèi)正方形ABCD與正方形CEFH如圖放置,連DE,BH,兩線交于M.求證:
(1)BH=DE.
(2)BH⊥DE.

查看答案和解析>>

同步練習(xí)冊(cè)答案