【題目】如圖,已知△ABC中,AB=BC,以AB為直徑的圓O交AC于點(diǎn)D,過點(diǎn)D作DE⊥BC,垂足為E,連接OE.
(1)求證:DE是⊙O的切線;
(2)若CD=,∠ACB=30°,求OE的長(zhǎng).
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)連接OD、BD,OD||BC,DE⊥BC,所以DE⊥OD.
(2)利用30°的特殊三角形求出DE長(zhǎng),再利用勾股定理得到OE長(zhǎng).
試題解析:
(1)證明:連接OD、BD,
∵AB是⊙O直徑,
∴∠ADB=90°,
∴BD⊥AC,
∵AB=BC,
∴D為AC中點(diǎn),
∵OA=OB,
∴OD∥BC,
∵DE⊥BC,
∴DE⊥OD,
∵OD為半徑,
∴DE是⊙O的切線;
(2)解:∵CD=,∠ACB=30°,
∴BC=2,
∴BD=BC=1,
∵AB=BC,
∴∠A=∠C=30°,
∵BD=1,
∴AB=2BD=2,
∴OD=1,
在Rt△CDB中,由三角形面積公式得:BC×DE=BD×CD,
1×=2DE,
DE=,在Rt△ODE中,由勾股定理得:OE==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,高,交于點(diǎn),連接并延長(zhǎng)交于點(diǎn),則圖中共有______________________組全等三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國(guó)家規(guī)定,中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí),為了解這項(xiàng)政策的落實(shí)情況,有關(guān)部門就“你某天在校體育活動(dòng)時(shí)間是多少”的問題,在某校隨機(jī)抽查了部分學(xué)生,再根據(jù)活動(dòng)時(shí)間t(小時(shí))進(jìn)行分組(A組:t<0.5,B組:0.5≤t<1,C組:1≤t<1.5,D組:t≥1.5),繪制成如下兩幅不完整統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息回答問題:
(1)此次抽查的學(xué)生數(shù)為 人;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)從抽查的學(xué)生中隨機(jī)詢問一名學(xué)生,該生當(dāng)天在校體育活動(dòng)時(shí)間低于1小時(shí)的概率是 ;
(4)若當(dāng)天在校學(xué)生數(shù)為1200人,請(qǐng)估計(jì)在當(dāng)天達(dá)到國(guó)家規(guī)定體育活動(dòng)時(shí)間的學(xué)生有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點(diǎn)A,B的坐標(biāo)分別為(4,0),(4,3),動(dòng)點(diǎn)M,N分別從O,B同時(shí)出發(fā).以每秒1個(gè)單位的速度運(yùn)動(dòng).其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過點(diǎn)M作MP⊥OA,交AC于P,連接NP,已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了秒.
(1)當(dāng)時(shí),求PC的長(zhǎng);
(2)當(dāng)為何值時(shí),△NPC是以PC為腰的等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,已知直線交軸于點(diǎn),軸于點(diǎn),的角平分線交軸于點(diǎn),過點(diǎn)作直線的垂線,交軸于點(diǎn).
(1)求直線的解析式;
(2)如圖2,若點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸,交直線于點(diǎn),當(dāng)四邊形為菱形時(shí),求的面積;
(3)如圖3,點(diǎn)為軸上的一個(gè)動(dòng)點(diǎn),連接、,將沿翻折得到,當(dāng)以點(diǎn)、、為頂點(diǎn)的三角形是等腰三角形時(shí),求點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 1,AM∥CN,點(diǎn) B 為平面內(nèi)一點(diǎn),AB⊥BC 于 B,過 B 作 BD⊥ AM.
(1)求證:∠ABD=∠C;
(2)如圖 2,在(1)問的條件下,分別作∠ABD、∠DBC 的平分線交 DM 于 E、F,若∠BFC=1.5∠ABF,∠FCB=2.5∠BCN,
①求證:∠ABF=∠AFB;
②求∠CBE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)銷售A,B兩種品牌的多媒體教學(xué)設(shè)備,這兩種多媒體教學(xué)設(shè)備的進(jìn)價(jià)和售價(jià)如表所示.
(1)若該商場(chǎng)計(jì)劃購(gòu)進(jìn)兩種多媒體教學(xué)設(shè)備若干套,共需124萬元,全部銷售后可獲毛利潤(rùn)36萬元.則該商場(chǎng)計(jì)劃購(gòu)進(jìn)A,B兩種品牌的多媒體教學(xué)設(shè)備各多少套?
(2)通過市場(chǎng)調(diào)研,該商場(chǎng)決定在(1)中所購(gòu)總數(shù)量不變的基礎(chǔ)上,減少A種設(shè)備的購(gòu)進(jìn)數(shù)量,增加B種設(shè)備的購(gòu)進(jìn)數(shù)量.若用于購(gòu)進(jìn)這兩種多媒體教學(xué)設(shè)備的總資金不超過120萬元,且全部銷售后可獲毛利潤(rùn)不少于33.6萬元.問有幾種購(gòu)買方案?并寫出購(gòu)買方案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com