【題目】某學校為了增強學生體質(zhì),決定開放以下球類活動項目:A.籃球、B.乒乓球、C.排球、D.足球.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計圖(如圖①,圖②),請回答下列問題:
(1)這次被調(diào)查的學生共有多少人?
(2)請你將條形統(tǒng)計圖補充完整;
(3)若該校共有學生1900人,請你估計該校喜歡D項目的人數(shù).
【答案】(1)200人;(2)60人;補全圖形見解析;(3)380人.
【解析】
(1)用喜歡籃球的人數(shù)除以喜歡籃球的人數(shù)所占的百分比,即可求出這些被調(diào)查的學生數(shù);
(2)用總?cè)藬?shù)減去喜歡籃球、乒乓球和足球的人數(shù),即可求出喜歡排球的人數(shù),從而補全統(tǒng)計圖;
(3)用總?cè)藬?shù)乘以喜歡足球的人數(shù)所占的百分比可得答案.
解:(1)根據(jù)題意得:20 =200(人)
則這次被調(diào)查的學生共200人;
(2)喜歡排球的人數(shù)是:200-20-80-40=60(人),補全圖形如圖所示:
(3)1900 =380人
答:該校喜歡D項目的人數(shù)約為380人.
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里裝有4個分別寫有數(shù)字﹣2,﹣1,0,1,2的小球,它們除數(shù)字不同外其余全部相同,現(xiàn)從盒子里隨機取出一個小球,將該小球上的數(shù)字為m,點P的坐標為(m,m2+1),則點P落在拋物線y=﹣4x2+8x+5與x軸所圍成的區(qū)域內(nèi)(含邊界)的概率是___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點A,BD⊥直線m, CE⊥直線m,垂足分別為點D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖 1,在△ABC 中,∠ACB=90°,BC=AC,點 D 在 AB 上,DE⊥AB交 BC 于 E,點 F 是 AE 的中點
(1) 寫出線段 FD 與線段 FC 的關(guān)系并證明;
(2) 如圖 2,將△BDE 繞點 B 逆時針旋轉(zhuǎn)α(0°<α<90°),其它條件不變,線段 FD 與線段 FC 的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3) 將△BDE 繞點 B 逆時針旋轉(zhuǎn)一周,如果 BC=4,BE=2,直接寫出線段 BF 的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知拋物線L:y=ax2+bx﹣1.5(a>0)與x軸交于點A(-1,0)和點B,頂點為M,對稱軸為直線l:x=1.
(1)直接寫出點B的坐標及一元二次方程ax2+bx﹣1.5=0的解.
(2)求拋物線L的解析式及頂點M的坐標.
(3)如圖2,設點P是拋物線L上的一個動點,將拋物線L平移.使它的頂點移至點P,得到新拋物線L′,L′與直線l相交于點N.設點P的橫坐標為m
①當m=5時,PM與PN有怎樣的數(shù)量關(guān)系?請說明理由.
②當m為大于1的任意實數(shù)時,①中的關(guān)系式還成立嗎?為什么?
③是否存在這樣的點P,使△PMN為等邊三角形?若存在.請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為了了解九年級學生體能狀況,從九年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,B,C,D四個等級,并依據(jù)測試成績繪制了如下兩幅尚不完整的統(tǒng)計圖;
(1)這次抽樣調(diào)查的樣本容量是 ,并補全條形圖;
(2)D等級學生人數(shù)占被調(diào)查人數(shù)的百分比為 ,在扇形統(tǒng)計圖中C等級所對應的圓心角為 °;
(3)該校九年級學生有1500人,請你估計其中A等級的學生人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,過原點O的直線l1與雙曲線的一個交點為A(1,m).
(1)求直線l1的表達式;
(2)過動點P(n,0)(n>0)且垂直于x軸的直線與直線l1和雙曲線的交點分別為B,C,當點B位于點C上方時,直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】居民區(qū)內(nèi)的“廣場舞”引起媒體關(guān)注,遼寧都市頻道為此進行過專訪報道.小平想了解本小區(qū)居民對“廣場舞”的看法,進行了一次抽樣調(diào)查,把居民對“廣場舞”的看法分為四個層次:A.非常贊同;B.贊同但要有時間限制;C.無所謂;D.不贊同.并將調(diào)查結(jié)果繪制了圖1和圖2兩幅不完整的統(tǒng)計圖.
請你根據(jù)圖中提供的信息解答下列問題:
(1)求本次被抽查的居民有多少人?
(2)將圖1和圖2補充完整;
(3)求圖2中“C”層次所在扇形的圓心角的度數(shù);
(4)估計該小區(qū)4000名居民中對“廣場舞”的看法表示贊同(包括A層次和B層次)的大約有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐--------圖形變換中的數(shù)學問題
問題情境:
如圖1,已知矩形中,點是的中點,連接.將矩形沿剪開,得到四邊形和四邊形.
(1)求證:四邊形是矩形;
操作探究:
保持矩形位置不變,將矩形從圖1的位置開始,繞點按逆時針方向旋轉(zhuǎn),設旋轉(zhuǎn)角為().操作中,提出了如下向題,請你解答:
(2)如圖2,當矩形旋轉(zhuǎn)到點落在線段上時,線段恰好經(jīng)過點,設與相交于點.判斷四邊形的形狀,并說明理由;
(3)請從兩題中任選一題作答,我選擇題.
A.在矩形旋轉(zhuǎn)過程中,連接線段和.當時,直接寫出旋轉(zhuǎn)角的度數(shù).
B.已知矩形中,.在矩形旋轉(zhuǎn)過程中,連接線段和,當時,直接寫出的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com