【題目】某種水彩筆,在購買時,若同時額外購買筆芯,每個優(yōu)惠價為3元,使用期間,若備用筆芯不足時需另外購買,每個5元.現(xiàn)要對在購買水彩筆時應同時購買幾個筆芯作出選擇,為此收集了這種水彩筆在使用期內需要更換筆芯個數(shù)的30組數(shù)據(jù),整理繪制出下面的條形統(tǒng)計圖:
設x表示水彩筆在使用期內需要更換的筆芯個數(shù),y表示每支水彩筆在購買筆芯上所需要的費用(單位:元),n表示購買水彩筆的同時購買的筆芯個數(shù).
(1)若n=9,求y與x的函數(shù)關系式;
(2)若要使這30支水彩筆“更換筆芯的個數(shù)不大于同時購買筆芯的個數(shù)”的頻率不小于0.5,確定n的最小值;
(3)假設這30支筆在購買時,每支筆同時購買9個筆芯,或每支筆同時購買10個筆芯,分別計算這30支筆在購買筆芯所需費用的平均數(shù),以費用最省作為選擇依據(jù),判斷購買一支水彩筆的同時應購買9個還是10個筆芯.

【答案】
(1)

解:當n=9時,y= =


(2)

解:根據(jù)題意,“更換筆芯的個數(shù)不大于同時購買筆芯的個數(shù)”的頻率不小于0.5,則“更換筆芯的個數(shù)不大于同時購買筆芯的個數(shù)”的頻數(shù)大于30×0.5=15,

根據(jù)統(tǒng)計圖可得,需要更換筆芯的個數(shù)為7個對應的頻數(shù)為4,8個對應的頻數(shù)為6,9個對應的頻數(shù)為8,

因此當n=9時,“更換筆芯的個數(shù)不大于同時購買筆芯的個數(shù)”的頻數(shù)=4+6+8=18>15.

因此n的最小值為9.


(3)

解:若每支筆同時購買9個筆芯,

則所需費用總和=(4+6+8)×3×9+7×(3×9+5×1)+5×(3×9+5×2)=895,

若每支筆同時購買10個筆芯,

則所需費用總和=(4+6+8+7)×3×10+5×(3×10+5×1)=925,

因此應購買9個筆芯.


【解析】(1)根據(jù)題意列出函數(shù)關系式;
   。2)由條形統(tǒng)計圖得到需要更換筆芯的個數(shù)為7個對應的頻數(shù)為4,8個對應的頻數(shù)為6,9個對應的頻數(shù)為8,即可.
    (3)分兩種情況計算 此題是一次函數(shù)的應用,主要考查了一次函數(shù)的性質,統(tǒng)計圖,解本題的關鍵是統(tǒng)計圖的分析.
【考點精析】認真審題,首先需要了解頻數(shù)與頻率(落在各個小組內的數(shù)據(jù)的個數(shù)為頻數(shù);每一小組的頻數(shù)與數(shù)據(jù)總數(shù)(樣本容量n)的比值叫做這一小組的頻率),還要掌握條形統(tǒng)計圖(能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況)的相關知識才是答題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知xy、z為有理數(shù),且|x+y+z+1|=x+yz﹣2,則=____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的66網格中,A,B,C是格點(我們把組成網格的小正方形的頂點,稱為格點),其中點C在直線AB外。

(1)A點畫AB的垂線AG;

(2)C點畫AB的平行線CH;

(3)連接BC,線段BC與線段AB的關系:______________;

(4)_____________________是點C到直線AB的距離;

(5)因為直線外一點和直線上各點連接的所有線段中,垂線段最短,所以線段AC,BC的大小關系是______________(用“<”號連接)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解學生的體能情況,隨機選取了1000名學生進行調查,并記錄了他們對長跑、短跑、跳繩、跳遠四個項目的喜歡情況,整理成以下統(tǒng)計表,其中“√”表示喜歡,“×”表示不喜歡.

項目
學生

長跑

短跑

跳繩

跳遠

200

×

300

×

×

150

×

200

×

×

150

×

×

×


(1)估計學生同時喜歡短跑和跳繩的概率;
(2)估計學生在長跑、短跑、跳繩、跳遠中同時喜歡三個項目的概率;
(3)如果學生喜歡長跑、則該同學同時喜歡短跑、跳繩、跳遠中哪項的可能性大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABO的頂點O在坐標原點,點B在x軸上,∠ABO=90°,∠AOB=30°,OB=2 ,反比例函數(shù)y= (x>0)的圖象經過OA的中點C,交AB于點D.
(1)求反比例函數(shù)的關系式;
(2)連接CD,求四邊形CDBO的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD對角線交于點O,BE∥AC,AE∥BD,EO與AB交于點F.

(1)試判斷四邊形AEBO的形狀,并說明你的理由;

(2)求證:EO=DC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(題文)圖1是一個長為2a,寬為2b的長方形,沿圖中虛線剪開分成四塊小長方形,然后按圖2的形狀拼成一個正方形.

圖2的陰影部分的正方形的邊長是______.

用兩種不同的方法求圖中陰影部分的面積.

(方法1)= ____________;

(方法2)= ____________;

(3) 觀察圖2,寫出(a+b)2,(a-b)2,ab這三個代數(shù)式之間的等量關系;

根據(jù)題中的等量關系,解決問題:若m+n=10,m-n=6,求mn的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解:

如圖,在平面直角坐標系中,若已知點A(xA,yA)和點C(xC,yC),點M為線段AC的中點,利用三角形全等的知識,有△AMP≌△CMQ,則有PM=MQ,PA=QC,即xM﹣xA=xC﹣xM,yA﹣yM=yM﹣yC,從而有,即中點M的坐標為(,).

基本知識:

(1)如圖,若A、C點的坐標分別A(﹣1,3)、C(3,﹣1),求AC中點M的坐標;

方法提煉:

(2)如圖,在平面直角坐標系中,ABCD的頂點A、B、C的坐標分別為(﹣1,5)、(﹣2,2)、(3,3),求點D的坐標;

(3)如圖,點A是反比例函數(shù)y=(x>0)上的動點,過點A作ABx軸,ACy軸,分別交函數(shù)y(x>0)的圖象于點B、C,點D是直線y=2x上的動點,請?zhí)剿髟邳cA運動過程中,以A、B、C、D為頂點的四邊形能否為平行四邊形,若能,求出此時點A的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將四邊形ABCD稱為“基本圖形”,且各點的坐標分別為A(4,4),B(1,3),C(3,3),D(3,1).
①畫出“基本圖形”關于原點O對稱的四邊形A1B1C1D1 , 并填出A1 , B1 , C1 , D1的坐標;
②畫出“基本圖形”繞B點順時針旋轉90°所成的四邊形A2B2C2D2
A1 , )B1 ,
C1 , )D1 ,

查看答案和解析>>

同步練習冊答案